scholarly journals All-atom molecular dynamics simulations of synaptic vesicle fusion I: a glimpse at the primed state

2021 ◽  
Author(s):  
Josep Rizo ◽  
Levent Sari ◽  
Yife Qi ◽  
Wonpil Im ◽  
Milo M Lin

Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of synaptotagmin-1 and/or complexin-1. Our results help visualize potential states of the release machinery en route to fusion, and suggest mechanistic features that may control the speed of release. In particular, the simulations suggest that the primed state contains almost fully assembled trans-SNARE complexes bound to the synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration where interactions of the C2B domain with the plasma membrane orient complexin-1 toward the vesicle, avoiding premature membrane merger but keeping the system ready for fast fusion upon Ca2+ influx.

2021 ◽  
Vol 23 (14) ◽  
pp. 8525-8540
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

Ground-state and excited-state molecular dynamics simulations shed light on the rotation mechanism of small, light-driven molecular motors and predict motor performance. How fast can they rotate; how much torque and power can they generate?


Soft Matter ◽  
2019 ◽  
Vol 15 (41) ◽  
pp. 8402-8411 ◽  
Author(s):  
Georgia Tsagkaropoulou ◽  
Finian J. Allen ◽  
Stuart M. Clarke ◽  
Philip J. Camp

Molecular-dynamics simulations are used to explore bilayers formed by simple ionic surfactants at the mica–water interface, and to shed light on experimental observations.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xiaoxia Liu ◽  
Alpay Burak Seven ◽  
Marcial Camacho ◽  
Victoria Esser ◽  
Junjie Xu ◽  
...  

Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a ‘primed’ state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion.


2014 ◽  
Vol 118 (35) ◽  
pp. 10444-10459 ◽  
Author(s):  
Geraldine S. Lim ◽  
Jernej Zidar ◽  
Daniel W. Cheong ◽  
Stephan Jaenicke ◽  
Marco Klähn

2020 ◽  
Vol 22 (4) ◽  
pp. 2033-2045 ◽  
Author(s):  
Konstantin S. Smirnov

Molecular dynamics simulations shed light on the relationship between the structure and sum-frequency generation vibrational spectrum of water on uncharged Q4 surfaces of different affinity for water.


Sign in / Sign up

Export Citation Format

Share Document