scholarly journals Post-Translational Tubulin Modifications in Differentiated Human Neural Stem Cells

2022 ◽  
Author(s):  
V. Bleu Knight ◽  
Manasi P. Jogalekar ◽  
Elba E. Serrano

The tubulin protein fulfills a variety of cellular functions that range from chromosomal separation to locomotion. The functional diversity of tubulin is achieved through the expression of specific tubulin isotypes in different cell types or developmental time periods. Post-translational modifications (PTMs) of tubulin also are vital for specific intracellular tasks, such as binding and recruiting motor proteins. In neurons, the isotypic expression profile for tubulin is well characterized, and the importance of PTMs for proper neuronal function has gained recent attention due to their implication in neurodegenerative disorders. In contrast, the role of tubulin specializations in the specification of neural cell fate has received minimal attention and studies of tubulin PTMs and isotypes in neuroglia such as astrocytes are relatively few. To bridge this knowledge gap, we undertook an analysis of PTMs in neurons and astrocytes derived from the federally approved H9 hESC-derived human neural stem cell (hNSC) line. In hNSCs, basal cells can be directed to assume neural fate as neurons or astrocytes by specifying different media growth conditions. Immunocytochemical methods, fluorescent antibody probes, and confocal microscopy facilitated image acquisition of fluorescent signals from class III β- tubulin (βIII-tubulin), acetylated tubulin, and polyglutamylated tubulin. Fluorescent probe intensities were assessed with the EBImage package for the statistical programming language R and compared using Student's t-tests. Qualitative analysis indicated that βIII-tubulin, acetylated tubulin, and polyglutamylated tubulin were expressed to some degree in basal hNSCs and their media-differentiated hNSC neuronal and astroglial progeny. In media-differentiated hNSC astrocyte progeny, quantification and statistical analysis of fluorescence probe intensity showed that acetylated tubulin/ βIII-tubulin ratios were greater than the ratio for polyglutamylated tubulin/ βIII-tubulin. These findings represent a snapshot of the dynamic and varied changes tubulin expression profile during the specification of neural cell fate. Results imply that investigations of tubulin PTMs have the potential to advance our understanding of the generation and regeneration of nervous tissue.

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Chunnian Zhao ◽  
GuoQiang Sun ◽  
Peng Ye ◽  
Shengxiu Li ◽  
Yanhong Shi

2012 ◽  
Vol 84 (2) ◽  
pp. 176-184 ◽  
Author(s):  
Svetlana Gavrilov ◽  
Thomas G. Nührenberg ◽  
Anthony W. Ashton ◽  
Chang-Fu Peng ◽  
Jennifer C. Moore ◽  
...  

2003 ◽  
Vol 259 (1) ◽  
pp. 150-161 ◽  
Author(s):  
Jun Motoyama ◽  
Ljiljana Milenkovic ◽  
Mizuho Iwama ◽  
Yayoi Shikata ◽  
Matthew P. Scott ◽  
...  

Cell Reports ◽  
2015 ◽  
Vol 12 (9) ◽  
pp. 1414-1429 ◽  
Author(s):  
Priya Srikanth ◽  
Karam Han ◽  
Dana G. Callahan ◽  
Eugenia Makovkina ◽  
Christina R. Muratore ◽  
...  

2014 ◽  
Vol 369 (1652) ◽  
pp. 20130511 ◽  
Author(s):  
Takuya Imamura ◽  
Masahiro Uesaka ◽  
Kinichi Nakashima

In the mammalian brain, epigenetic mechanisms are clearly involved in the regulation of self-renewal of neural stem cells and the derivation of their descendants, i.e. neurons, astrocytes and oligodendrocytes, according to the developmental timing and the microenvironment, the ‘niche’. Interestingly, local epigenetic changes occur, concomitantly with genome-wide level changes, at a set of gene promoter regions for either down- or upregulation of the gene. In addition, intergenic regions also sensitize the availability of epigenetic modifiers, which affects gene expression through a relatively long-range chromatinic interaction with the transcription regulatory machineries including non-coding RNA (ncRNA) such as promoter-associated ncRNA and enhancer ncRNA. We show that such an epigenetic landscape in a neural cell is statically but flexibly formed together with a variable combination of generally and locally acting nuclear molecules including master transcription factors and cell-cycle regulators. We also discuss the possibility that revealing the epigenetic regulation by the local DNA–RNA–protein assemblies would promote methodological innovations, e.g. neural cell reprogramming, engineering and transplantation, to manipulate neuronal and glial cell fates for the purpose of medical use of these cells.


Sign in / Sign up

Export Citation Format

Share Document