scholarly journals Triple-helix potential of the mouse genome

2022 ◽  
Author(s):  
Kaku Maekawa ◽  
Shintaro Yamada ◽  
Rahul Sharma ◽  
Jayanta Chauduri ◽  
Scott Keeney

Certain DNA sequences, including mirror-symmetric polypyrimidine/polypurine runs, are capable of folding into a triple-helix-containing non-B-form DNA structure called H-DNA. Such H-DNA-forming sequences are frequent in many eukaryotic genomes, including in mammals, and multiple lines of evidence indicate that these motifs are mutagenic and can impinge on DNA replication, transcription, and other aspects of genome function. In this study, we show that the triplex-forming potential of H-DNA motifs in the mouse genome can be evaluated using S1-sequencing (S1-seq), which uses the single-stranded DNA (ssDNA)-specific nuclease S1 to generate deep-sequencing libraries that report on the position of ssDNA throughout the genome. When S1-seq was applied to genomic DNA isolated from mouse testis cells and splenic B cells, we observed prominent clusters of S1-seq reads that appeared to be independent of endogenous double-strand breaks, that coincided with H-DNA motifs, and that correlated strongly with the triplex-forming potential of the motifs. Fine-scale patterns of S1-seq reads, including a pronounced strand asymmetry in favor of centrally-positioned reads on the pyrimidine-containing strand, suggested that this S1-seq signal is specific for one of the four possible isomers of H-DNA (H-y5). By leveraging the abundance and complexity of naturally occurring H-DNA motifs across the mouse genome, we further defined how polypyrimidine repeat length and the presence of repeat-interrupting substitutions modify the structure of H-DNA. This study provides a new approach for studying DNA secondary structure genome wide at high spatial resolution.

2021 ◽  
Vol 2 (2) ◽  
pp. 100554
Author(s):  
Ishita Joshi ◽  
Jenna DeRycke ◽  
Megan Palmowski ◽  
Robert LeSuer ◽  
Wenyi Feng

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna Biernacka ◽  
Yingjie Zhu ◽  
Magdalena Skrzypczak ◽  
Romain Forey ◽  
Benjamin Pardo ◽  
...  

AbstractMaintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.


2021 ◽  
Author(s):  
Alexandre Nore ◽  
Ariadna B Juarez-Martinez ◽  
Julie AJ Clement ◽  
Christine Brun ◽  
Bouboub Diagouraga ◽  
...  

Meiosis requires the formation of programmed DNA double strand breaks (DSBs), essential for fertility and for generating genetic diversity. In male and female meiotic cells, DSBs are induced by the catalytic activity of the TOPOVIL complex formed by SPO11 and TOPOVIBL. To ensure genomic integrity, DNA cleavage activity is tightly regulated, and several accessory factors (REC114, MEI4, IHO1, and MEI1) are needed for DSB formation in mice. How and when these proteins act is not understood. Here, we show that REC114 is a direct partner of TOPOVIBL, and identified their conserved interacting domains by structural analysis. We then analysed the role of this interaction by monitoring meiotic DSBs in female and male mice carrying point mutations in TOPOVIBL that decrease or disrupt its binding to REC114. In these mutants, DSB activity was strongly reduced genome-wide in oocytes, but only in sub-telomeric regions in spermatocytes. In addition, in mutant spermatocytes, DSB activity was delayed in autosomes. These results provide evidence that REC114 is a key member of the TOPOVIL catalytic complex, and that the REC114/TOPOVIBL interaction ensures the efficiency and timing of DSB activity by integrating specific chromosomal features.


PLoS Biology ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. e3000695
Author(s):  
Cynthia J. Sakofsky ◽  
Natalie Saini ◽  
Leszek J. Klimczak ◽  
Kin Chan ◽  
Ewa P. Malc ◽  
...  

Science ◽  
2017 ◽  
Vol 355 (6320) ◽  
pp. 40-45 ◽  
Author(s):  
Eleni P. Mimitou ◽  
Shintaro Yamada ◽  
Scott Keeney

DNA double-strand breaks that initiate meiotic recombination are exonucleolytically processed. This 5′→3′ resection is a central, conserved feature of recombination but remains poorly understood. To address this lack, we mapped resection endpoints genome-wide at high resolution inSaccharomyces cerevisiae. Full-length resection requires Exo1 exonuclease and the DSB-responsive kinase Tel1, but not Sgs1 helicase. Tel1 also promotes efficient and timely resection initiation. Resection endpoints display pronounced heterogeneity between genomic loci that reflects a tendency for nucleosomes to block Exo1, yet Exo1 also appears to digest chromatin with high processivity and at rates similar to naked DNA in vitro. This paradox points to nucleosome destabilization or eviction as a defining feature of the meiotic resection landscape.


Sign in / Sign up

Export Citation Format

Share Document