scholarly journals A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Isaac Shamie ◽  
Sascha H Duttke ◽  
Karen J la Cour Karottki ◽  
Claudia Z Han ◽  
Anders H Hansen ◽  
...  

Abstract Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.

2020 ◽  
Author(s):  
Isaac Shamie ◽  
Sascha H. Duttke ◽  
Karen J. la Cour Karottki ◽  
Claudia Z. Han ◽  
Anders H. Hansen ◽  
...  

ABSTRACTChinese hamster ovary (CHO) cells, with their human-compatible glycosylation and high protein titers, are the most widely used cells for producing biopharmaceuticals. Engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the Chinese hamster genome were computationally predicted and are frequently inaccurate. Here, we revised TSS annotations for 15,308 Chinese hamster genes and 4,478 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. The experimental realignment and discovery of TSSs now expose previously hidden motifs, such as the TATA box. We further demonstrate, by targeting the glycosyltransferase gene Mgat3, how accurate annotations readily facilitate activating silent genes by CRISPRa to obtain more human-like glycosylation. Together, we envision our annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.


2001 ◽  
Vol 21 (4) ◽  
pp. 1121-1131 ◽  
Author(s):  
Young-Chae Chang ◽  
Sharon Illenye ◽  
Nicholas H. Heintz

ABSTRACT In mammalian cells reiterated binding sites for Sp1 and two overlapping and inverted E2F sites at the transcription start site regulate the dhfr promoter during the cell growth cycle. Here we have examined the contributions of the dhfr Sp1 and E2F sites in the repression of dhfr gene expression. In serum-starved cells or during serum stimulation, the Chinese hamsterdhfr gene was not derepressed by trichostatin A (TSA), an inhibitor of histone deacetylases (HDAC). Immunoprecipitation experiments showed that HDAC1 and hypophosphorylated retinoblastoma protein (pRb) are associated with Sp1 in serum-starved CHOC400 cells. In transfection experiments, reporter plasmids containing the reiterated dhfr Sp1 sites were stimulated 10-fold by TSA, while a promoter containing four dhfr E2F sites and a TATA box was responsive to E2F but was completely unaffected by TSA. HDAC1 did not coprecipitate with p130-E2F DNA binding complexes, the predominant E2F binding activity in cell extracts after serum starvation, suggesting that p130 imposes a TSA-insensitive state on thedhfr promoter. In support of this notion, recruitment of GAL4-p130 to a dihydrofolate reductase-GAL4 reporter rendered the promoter insensitive to TSA, while repression by GAL4-pRb was sensitive to TSA. Upon phosphorylation of pRb and p130 after serum stimulation, the Sp1-pRb and p130-E2F interactions were lost while the Sp1-HDAC1 interaction persisted into S phase. Together these studies suggest a dynamic model for the cooperation of pRb and p130 in repression ofdhfr gene expression during withdrawal from the cell cycle. We propose that, during initial phases of cell cycle withdrawal, the binding of dephosphorylated pRb to Sp1-HDAC1 complexes and complexes of E2F-1 -to -3 with DP results in transient, HDAC-dependent suppression of dhfr transcription. Upon withdrawal of cells into G0, recruitment of p130 to E2F-4–DP-1 complexes at the transcription start site results in a TSA-insensitive complex that cooperates with Sp1-HDAC-pRb complexes to stably repressdhfr promoter activity in quiescent cells.


2003 ◽  
Vol 372 (3) ◽  
pp. 831-839 ◽  
Author(s):  
Elisabetta LAMBERTINI ◽  
Letizia PENOLAZZI ◽  
Silvia GIORDANO ◽  
Laura DEL SENNO ◽  
Roberta PIVA

(O)estrogen receptor-α (ERα), a hormone-dependent transcription factor belonging to the steroid/thyroid-hormone-receptor superfamily, plays an essential role in the development and maintenance of the skeleton. Here we report the analysis of an unexplored sequence inside the bone-specific distal promoter F (PF) with respect to the regulation of ERα gene expression in bone. This sequence, 785 bp in size, is localized upstream of the assigned transcription start site of exon F, at −117140 bp from the originally described transcription start site +1. It contains a TA reach box, a conventional CAAT box and potential regulatory elements for many transcription factors, including Cbfa1 [OSE2 (osteoblast-specific element) core binding factor], GATA-1 [(A/T)GATA(A/G) binding protein], Sox5 [sex-determining region Y (SRY)-type HMG bOX protein, belonging to a subfamily of DNA-binding proteins with an HMG domain], Sry, AP1 (activator protein 1) and CP2 (activator of γ-globin). It is able to strongly activate the luciferase reporter gene in MG-63 osteoblastic-like cells, but not in MCF7 breast-cancer cells. This is in agreement with different transcripts that we found in the two cell types. The footprinting and electrophoretic mobility-shift assays (EMSAs) showed that, inside the region analysed, there were some sequences that specifically reacted to nuclear proteins isolated from MG-63 cells. In particular, we identified two regions, named PFa and PFb, that do not present binding sites for known transcription factors and that are involved in a strong DNA–protein interaction in MG-63, but not in MCF7, cells. The analysis of three transcription factors (GATA-1, Sry and Sox) that might bind the identified footprinted areas suggested a possible indirect role of these proteins in the regulation of ERα gene expression in bone. These data provide evidence for different promoter usage of the ERα gene through the recruitment of tissue-specific transcription activators and co-regulators.


1988 ◽  
Vol 8 (6) ◽  
pp. 2536-2544 ◽  
Author(s):  
J H Park ◽  
M W Taylor

The 5' end of the Chinese hamster ovary aprt gene was sequenced and transcription start sites were determined by both S1 nuclease protection and primer extension assays. Deletion mutants covering the same area were constructed, and adenine phosphoribosyltransferase (APRT) or chloramphenicol acetyltransferase (CAT) activity was measured by transient-expression assays. The aprt gene uses a single cluster of transcription start sites and lacks consensus sequences such as TATA and CCAAT, which are general components of eucaryotic promoters. The 5' deletion mutations of the promoter sequences demonstrated that (i) there is no decrease in either APRT activity or transcription extending to position -89 (relative to the main transcription start site); (ii) an additional 29-base-pair (bp) deletion decreases APRT activity and transcription twofold; and (iii) a deletion past the transcription start sites (P5' delta +27) abolishes both APRT activity and transcription, indicating that a 60-bp fragment immediately upstream of the main transcription start site is involved in basic transcription and a 29-bp fragment just upstream of the 60 bp-fragment stimulates transcription twofold. The 3' deletion mutations showed that a deletion of a 61-bp fragment in the 5' leader and coding sequence abolishes the efficient translation of an aprt-CAT gene transcript. In addition, there are two polyadenylation signals at the genomic 3' end, with the proximal one being sufficient for functional polyadenylation.


1988 ◽  
Vol 8 (6) ◽  
pp. 2536-2544
Author(s):  
J H Park ◽  
M W Taylor

The 5' end of the Chinese hamster ovary aprt gene was sequenced and transcription start sites were determined by both S1 nuclease protection and primer extension assays. Deletion mutants covering the same area were constructed, and adenine phosphoribosyltransferase (APRT) or chloramphenicol acetyltransferase (CAT) activity was measured by transient-expression assays. The aprt gene uses a single cluster of transcription start sites and lacks consensus sequences such as TATA and CCAAT, which are general components of eucaryotic promoters. The 5' deletion mutations of the promoter sequences demonstrated that (i) there is no decrease in either APRT activity or transcription extending to position -89 (relative to the main transcription start site); (ii) an additional 29-base-pair (bp) deletion decreases APRT activity and transcription twofold; and (iii) a deletion past the transcription start sites (P5' delta +27) abolishes both APRT activity and transcription, indicating that a 60-bp fragment immediately upstream of the main transcription start site is involved in basic transcription and a 29-bp fragment just upstream of the 60 bp-fragment stimulates transcription twofold. The 3' deletion mutations showed that a deletion of a 61-bp fragment in the 5' leader and coding sequence abolishes the efficient translation of an aprt-CAT gene transcript. In addition, there are two polyadenylation signals at the genomic 3' end, with the proximal one being sufficient for functional polyadenylation.


2000 ◽  
Vol 348 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Isabelle VAN SEUNINGEN ◽  
Michaël PERRAIS ◽  
Pascal PIGNY ◽  
Nicole PORCHET ◽  
Jean-Pierre AUBERT

Control of gene expression in intestinal cells is poorly understood. Molecular mechanisms that regulate transcription of cellular genes are the foundation for understanding developmental and differentiation events. Mucin gene expression has been shown to be altered in many intestinal diseases and especially cancers of the gastrointestinal tract. Towards understanding the transcriptional regulation of a member of the 11p15.5 human mucin gene cluster, we have characterized 3.55 kb of the 5ʹ-flanking region of the human mucin gene MUC5B, including the promoter, the first two exons and the first intron. We report here the promoter activity of successively 5ʹ-truncated sections of 956 bases of this region by fusing it to the coding region of a luciferase reporter gene. The transcription start site was determined by primer-extension analysis. The region upstream of the transcription start site is characterized by the presence of a TATA box at bases -32/-26, DNA-binding elements for transcription factors c-Myc, N-Myc, Sp1 and nuclear factor ĸB as well as putative activator protein (AP)-1-, cAMP-response-element-binding protein (CREB)-, hepatocyte nuclear factor (HNF)-1-, HNF-3-, TGT3-, gut-enriched Krüppel factor (GKLF)-, thyroid transcription factor (TTF)-1- and glucocorticoid receptor element (GRE)-binding sites. Intron 1 of MUC5B was also characterized, it is 2511 nucleotides long and contains a DNA segment of 259 bp in which are clustered eight tandemly repeated GA boxes and a CACCC box that bind Sp1. AP-2α and GATA-1 nuclear factors were also shown to bind to their respective cognate elements in intron 1. In transfection studies the MUC5B promoter showed a cell-specific activity as it is very active in mucus-secreting LS174T cells, whereas it is inactive in Caco-2 enterocytes and HT-29 STD (standard) undifferentiated cells. Within the promoter, maximal transcription activity was found in a segment covering the first 223 bp upstream of the transcription start site. Finally, in co-transfection experiments a transactivating effect of Sp1 on to MUC5B promoter was seen in LS174T and Caco-2 cells.


2019 ◽  
Author(s):  
Vivek Bhardwaj ◽  
Giuseppe Semplicio ◽  
Niyazi Umut Erdogdu ◽  
Asifa Akhtar

Abstract Below we present a simple and quick TSS quantification protocol, MAPCap (Multiplexed Affinity Purification of Capped RNA) that enables users to combine high-resolution detection of transcription start-sites and differential expression analysis. MAPCap can be used to profile TSS from dozens of samples in a multiplexed way, in 16-18 hours. MAPCap data can be analyzed using our easy-to-use software icetea (https://bioconductor.org/packages/icetea), which allows users to detect robust TSS using replicates, and perform differential TSS analysis.


Blood ◽  
1991 ◽  
Vol 78 (6) ◽  
pp. 1589-1595
Author(s):  
L Romao ◽  
L Osorio-Almeida ◽  
DR Higgs ◽  
J Lavinha ◽  
SA Liebhaber

We describe an alpha-thalassemia determinant in which alpha-globin expression is silenced by a deletion located 27 kb 5′ to the transcription start site of the alpha 2-globin gene. This alpha- thalassemic determinant, (alpha alpha)MM, is a member of a newly described group of thalassemic mutations resulting from deletion of locus-controlling sequences critical to globin gene expression.


Development ◽  
1995 ◽  
Vol 121 (7) ◽  
pp. 1957-1970 ◽  
Author(s):  
K.W. Makabe ◽  
C.V. Kirchhamer ◽  
R.J. Britten ◽  
E.H. Davidson

The SM50 gene encodes a minor matrix protein of the sea urchin embryo spicule. We carried out a detailed functional analysis of a cis-regulatory region of this gene, extending 440 bp upstream and 120 bp downstream of the transcription start site, that had been shown earlier to confer accurate skeletogenic expression of an injected expression vector. The distal portion of this fragment contains elements controlling amplitude of expression, while the region from −200 to +105 contains spatial control elements that position expression accurately in the skeletogenic lineages of the embryo. A systematic mutagenesis analysis of this region revealed four adjacent regulatory elements, viz two copies of a positively acting sequence (element D) that are positioned just upstream of the transcription start site; an indispensable spatial control element (element C) that is positioned downstream of the start site; and further downstream, a second positively acting sequence (element A). We then constructed a series of synthetic expression constructs. These contained oligonucleotides representing normal and mutated versions of elements D, C, and A, in various combinations. We also changed the promoter of the SM50 gene from a TATA-less to a canonical TATA box form, without any effect on function. Perfect spatial regulation was also produced by a final series of constructs that consisted entirely of heterologous enhancers from the CyIIIa gene, the SV40 early promoter, and synthetic D, C, and A elements. We demonstrate that element C exercises the primary spatial control function of the region we analyzed. We term this a ‘locator’ element. This differs from conventional ‘tissue-specific enhancers’ in that while it is essential for expression, it has no transcriptional activity on its own, and it requires other, separable, positive regulatory elements for activity. In the normal configuration these ancillary positive functions are mediated by elements A and D. Only positively acting control elements were observed in the SM50 regulatory domain throughout this analysis.


Sign in / Sign up

Export Citation Format

Share Document