scholarly journals Plasma SARS-CoV-2 RNA levels as a biomarker of lower respiratory tract SARS-CoV-2 infection in critically ill patients with COVID-19.

Author(s):  
Jana Jacobs ◽  
Asma Naqvi ◽  
Faraaz Shah ◽  
Valerie Boltz ◽  
Mary Kearney ◽  
...  

Plasma SARS-CoV-2 viral RNA (vRNA) levels are predictive of COVID-19 outcomes in hospitalized patients, but whether plasma vRNA reflects lower respiratory tract (LRT) vRNA levels is unclear. We compared plasma and LRT vRNA levels in simultaneously collected longitudinal samples from mechanically-ventilated patients with COVID-19. LRT and plasma vRNA levels were strongly correlated at first sampling (r=0.83, p<10-8) and then declined in parallel except in non-survivors who exhibited delayed vRNA clearance in LRT samples. Plasma vRNA measurement may offer a practical surrogate of LRT vRNA burden in critically ill patients, especially early in severe disease.

2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Longxiang Su ◽  
Chun Liu ◽  
Fengxiang Chang ◽  
Bo Tang ◽  
Lin Han ◽  
...  

Abstract Background Analgesia and sedation therapy are commonly used for critically ill patients, especially mechanically ventilated patients. From the initial nonsedation programs to deep sedation and then to on-demand sedation, the understanding of sedation therapy continues to deepen. However, according to different patient’s condition, understanding the individual patient’s depth of sedation needs remains unclear. Methods The public open source critical illness database Medical Information Mart for Intensive Care III was used in this study. Latent profile analysis was used as a clustering method to classify mechanically ventilated patients based on 36 variables. Principal component analysis dimensionality reduction was used to select the most influential variables. The ROC curve was used to evaluate the classification accuracy of the model. Results Based on 36 characteristic variables, we divided patients undergoing mechanical ventilation and sedation and analgesia into two categories with different mortality rates, then further reduced the dimensionality of the data and obtained the 9 variables that had the greatest impact on classification, most of which were ventilator parameters. According to the Richmond-ASS scores, the two phenotypes of patients had different degrees of sedation and analgesia, and the corresponding ventilator parameters were also significantly different. We divided the validation cohort into three different levels of sedation, revealing that patients with high ventilator conditions needed a deeper level of sedation, while patients with low ventilator conditions required reduction in the depth of sedation as soon as possible to promote recovery and avoid reinjury. Conclusion Through latent profile analysis and dimensionality reduction, we divided patients treated with mechanical ventilation and sedation and analgesia into two categories with different mortalities and obtained 9 variables that had the greatest impact on classification, which revealed that the depth of sedation was limited by the condition of the respiratory system.


2020 ◽  
Author(s):  
◽  
Jeanette Tas ◽  
Rob J.J. van Gassel ◽  
Serge J.H. Heines ◽  
Mark M.G. Mulder ◽  
...  

ABSTRACTBackgroundThe course of the disease in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mechanically ventilated patients is unknown. To unravel the clinical heterogeneity of the SARS-CoV-2 infection in these patients, we designed the prospective observational Maastricht Intensive Care COVID cohort; MaastrICCht. We incorporated serial measurements that harbour aetiological, diagnostic and predictive information. The study aims to investigate the heterogeneity of the natural course of critically ill patients with SARS-CoV-2 infection.Study populationMechanically ventilated patients admitted to the Intensive Care with SARS- CoV-2 infection.Main messageWe will collect clinical variables, vital parameters, laboratory variables, mechanical ventilator settings, chest electrical impedance tomography, electrocardiograms, echocardiography as well as other imaging modalities to assess heterogeneity of the natural course of SARS-CoV-2 infection in critically ill patients. The MaastrICCht cohort is, also designed to foster various other studies and registries and intends to create an open-source database for investigators. Therefore, a major part of the data collection is aligned with an existing national Intensive Care data registry and two international COVID-19 data collection initiatives. Additionally, we create a flexible design, so that additional measures can be added during the ongoing study based on new knowledge obtained from the rapidly growing body of evidence.ConclusionThe spread of the COVID-19 pandemic requires the swift implementation of observational research to unravel heterogeneity of the natural course of the disease of SARS- CoV-2 infection in mechanically ventilated patients. Our design is expected to enhance aetiological, diagnostic and prognostic understanding of the disease. This paper describes the design of the MaastrICCht cohort.Strengths and limitations of this studySerial measurements that characterize the disease course of SARS-CoV-2 infection in mechanically ventilated patientsData collection and analysis according to a predefined protocolFlexible, evolving design enabling the study of multiple aspects of SARS-CoV-2 infection in mechanically ventilated patientsSingle centre, including only ICU patients


2003 ◽  
Vol 29 (7) ◽  
pp. 1062-1068 ◽  
Author(s):  
René Robert ◽  
Ghislaine Grollier ◽  
Jean-Pierre Frat ◽  
Cendrine Godet ◽  
Michèle Adoun ◽  
...  

2019 ◽  
Author(s):  
Björn F. Koel ◽  
Frank van Someren Gréve ◽  
René M. Vigeveno ◽  
Maarten Pater ◽  
Colin A. Russell ◽  
...  

AbstractIn routine surveillance and diagnostic testing, influenza virus samples are typically collected only from the upper respiratory tract (URT) due to the invasiveness of sample collection from the lower airways. Very little is known about virus variation in the lower respiratory tract (LRT) and it remains unclear if the virus populations at different sites of the human airways may develop to have divergent genetic signatures. We used deep sequencing of serially obtained matched nasopharyngeal swabs and endotracheal aspirates from four mechanically ventilated patients with influenza A/H3N2 infections. A physical barrier separating both compartments of the respiratory tract introduced as part of the medical procedures enabled us to track and compare the genetic composition of the virus populations during isolated evolution in the same host. Amino acid variants reaching majority proportions emerged during the course of infection in both nasopharyngeal swabs and endotracheal aspirates, and amino acid variation was observed in all influenza virus proteins. Genetic variation of the virus populations differed between the URT and LRT and variants were frequently uniquely present in either URT or LRT virus populations of a patient. These observations indicate that virus populations in spatially distinct parts of the human airways may follow different evolutionary trajectories. Selectively sampling from the URT may therefore fail to detect potentially important emerging variants.ImportanceInfluenza viruses are rapidly mutating pathogens that easily adapt to changing environments. Although advances in sequencing technology make it possible to identify virus variants at very low proportions of the within-host virus population, several aspects of intrahost viral evolution have not been studied because sequentially collected samples and samples from the lower respiratory tract are not routinely obtained for influenza surveillance or clinical diagnostic purposes. Importantly, how virus populations evolve in different parts of the human respiratory tract remains unknown. Here we used serial clinical specimens collected from mechanically ventilated influenza patients to compare how virus populations develop in the upper and lower respiratory tract. We show that virus populations in the upper and lower respiratory tract may evolve along distinct evolutionary pathways, and that current sampling and surveillance regimens likely capture only part of the complete intrahost virus variation.


2018 ◽  
Vol 3 (2) ◽  
pp. 90-97
Author(s):  
Claudiu Puiac ◽  
Theodora Benedek ◽  
Lucian Puscasiu ◽  
Nora Rat ◽  
Emoke Almasy ◽  
...  

Abstract Objective: To demonstrate the relationship between intra-abdominal hypertension (IAH) and cardiac output (CO) in mechanically ventilated (MV), critically ill patients. Material and methods: This was a single-center, prospective study performed between January and April 2016, on 30 mechanically ventilated patients (mean age 67.3 ± 11.9 years), admitted in the Intensive Care Unit (ICU) of the Emergency County Hospital of Tîrgu Mureș, Romania, who underwent measurements of intra-abdominal pressure (IAP). Patients were divided into two groups: group 1 – IAP <12 mmHg (n = 21) and group 2 – IAP >12 mmHg (n = 9). In 23 patients who survived at least 3 days post inclusion, the variation of CO and IAP between baseline and day 3 was calculated, in order to assess the variation of IAP in relation to the hemodynamic status. Results: IAP was 8.52 ± 1.59 mmHg in group 1 and 19.88 ± 8.05 mmHg in group 2 (p <0.0001). CO was significantly higher in group 1 than in the group with IAH: 6.96 ± 2.07 mmHg (95% CI 6.01–7.9) vs. 4.57 ± 1.23 mmHg (95% CI 3.62–5.52) (p = 0.003). Linear regression demonstrated an inverse correlation between CO and IAP (r = 0.48, p = 0.007). Serial measurements of CO and IAP proved that whenever accomplished, the decrease of IAP was associated with a significant increase in CO (p = 0.02). Conclusions: CO is significantly correlated with IAP in mechanically ventilated patients, and IAH reduction is associated with increase of CO in these critically ill cases.


2021 ◽  
Vol 7 (3) ◽  
pp. 01-04
Author(s):  
Nahla Khalil

Incidence of delirium represented 32.3% since long in ICU settings, it might be higher. Other research showed the prevalence of delirium as high as 77% in ventilated burn patients. Incidence of delirium represented 32.3% since long in ICU settings, it might be higher. Other research showed the prevalence of delirium as high as 77% in ventilated burn patients. The incidence of delirium in the ICU ranged from 45% to 87%, this ratio appeared be different to the studied population exclusively to mechanically ventilated patients.


Sign in / Sign up

Export Citation Format

Share Document