scholarly journals Actin-microtubule dynamic composite forms responsive active matter with memory

2022 ◽  
Author(s):  
Ondrej Kucera ◽  
Jeremie Gaillard ◽  
Christophe Guerin ◽  
Manuel Thery ◽  
Laurent Blanchoin

Active cytoskeletal materials in vitro demonstrate self-organising properties similar to those observed in their counterparts in cells. However, the search to emulate phenomena observed in the living matter has fallen short of producing a cytoskeletal network that would be structurally stable yet possessing adaptive plasticity. Here, we address this challenge by combining cytoskeletal polymers in a composite, where self-assembling microtubules and actin filaments collectively self-organise due to the activity of microtubules-percolating molecular motors. We demonstrate that microtubules spatially organise actin filaments that in turn guide microtubules. The two networks align in an ordered fashion using this feedback loop. In this composite, actin filaments can act as structural memory and, depending on the concentration of the components, microtubules either write this memory or get guided by it. The system is sensitive to external stimuli suggesting possible autoregulatory behaviour in changing mechanochemical environment. We thus establish artificial active actin-microtubule composite as a system demonstrating architectural stability and plasticity.

Author(s):  
Ondřej Kučera ◽  
Daniel Janda ◽  
Valerie Siahaan ◽  
Sietske H. Dijkstra ◽  
Eliška Pilátová ◽  
...  

AbstractConstriction of the actin cytokinetic ring is an essential step of cell division. In a generally accepted view, the constriction is driven by relative sliding of actin filaments propelled by myosin motors. However, in multiple organisms, the ring constriction is myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that actin contractility can be propelled by anillin, a diffusible non-motor actin crosslinker, localising to the cytokinetic ring. We in vitro observed the formation and constriction of rings comprising multiple actin filaments bundled by anillin. Rings constricted due to anillin-generated forces maximising the overlap lengths between the filaments. Actin disassembly promoted constriction. We propose that actin crosslinkers, generating forces complementary to molecular motors, contribute to the contractility of diverse actin structures, including the cytokinetic ring.


2019 ◽  
Vol 116 (17) ◽  
pp. 8326-8335 ◽  
Author(s):  
Andrew T. Lombardo ◽  
Shane R. Nelson ◽  
Guy G. Kennedy ◽  
Kathleen M. Trybus ◽  
Sam Walcott ◽  
...  

The cell’s dense 3D actin filament network presents numerous challenges to vesicular transport by teams of myosin Va (MyoVa) molecular motors. These teams must navigate their cargo through diverse actin structures ranging from Arp2/3-branched lamellipodial networks to the dense, unbranched cortical networks. To define how actin filament network organization affects MyoVa cargo transport, we created two different 3D actin networks in vitro. One network was comprised of randomly oriented, unbranched actin filaments; the other was comprised of Arp2/3-branched actin filaments, which effectively polarized the network by aligning the actin filament plus-ends. Within both networks, we defined each actin filament’s 3D spatial position using superresolution stochastic optical reconstruction microscopy (STORM) and its polarity by observing the movement of single fluorescent reporter MyoVa. We then characterized the 3D trajectories of fluorescent, 350-nm fluid-like liposomes transported by MyoVa teams (∼10 motors) moving within each of the two networks. Compared with the unbranched network, we observed more liposomes with directed and fewer with stationary motion on the Arp2/3-branched network. This suggests that the modes of liposome transport by MyoVa motors are influenced by changes in the local actin filament polarity alignment within the network. This mechanism was supported by an in silico 3D model that provides a broader platform to understand how cellular regulation of the actin cytoskeletal architecture may fine tune MyoVa-based intracellular cargo transport.


2019 ◽  
Author(s):  
Andrew T. Lombardo ◽  
Shane R. Nelson ◽  
Guy G. Kennedy ◽  
Kathleen M. Trybus ◽  
Sam Walcott ◽  
...  

The cell's dense three-dimensional (3D) actin filament network presents numerous challenges to vesicular transport by teams of myosin Va (MyoVa) molecular motors. These teams must navigate their cargo through diverse actin structures ranging from Arp2/3-branched lamellipodial networks to the dense, unbranched cortical networks. To define how actin filament network organization affects MyoVa cargo transport, we created two different 3D actin networks in vitro. One network was comprised of randomly oriented, unbranched actin filaments; the other was comprised of Arp2/3-branched actin filaments, which effectively polarized the network by aligning the actin filament plus-ends. Within both networks, we defined each actin filament's 3D spatial position, using STORM microscopy, and its polarity by observing the movement of single fluorescent, reporter MyoVa. We then characterized the 3D trajectories of fluorescent, 350 nm fluid-like, liposomes transported by MyoVa teams (~10 motors) moving within each of the two networks. Compared to the unbranched network, we observed more liposomes with directed and fewer with stationary motion on the Arp2/3-branched network. This suggests that the modes of liposome transport by MyoVa motors are influenced by changes in the local actin filament polarity alignment within the network. This mechanism was supported by an in silico 3D model that provides a broader platform to understand how cellular regulation of the actin cytoskeletal architecture may fine-tune MyoVa-based intracellular cargo transport.


Author(s):  
Carolyn A. Larabell ◽  
David G. Capco ◽  
G. Ian Gallicano ◽  
Robert W. McGaughey ◽  
Karsten Dierksen ◽  
...  

Mammalian eggs and embryos contain an elaborate cytoskeletal network of “sheets” which are distributed throughout the entire cell cytoplasm. Cytoskeletal sheets are long, planar structures unlike the cytoskeletal networks typical of somatic cells (actin filaments, microtubules, and intermediate filaments), which are filamentous. These sheets are not found in mammalian somatic cells nor are they found in nonmammalian eggs or embryos. Evidence that they are, indeed, cytoskeletal in nature is derived from studies demonstrating that 1) the sheets are retained in the detergent-resistant cytoskeleton fraction; 2) there are no associated membranes (determined by freeze-fracture); and 3) the sheets dissociate into filaments at the blastocyst stage of embryogenesis. Embedment-free sections of hamster eggs viewed at 60 kV show sheets running across the egg cytoplasm (Fig. 1). Although this approach provides excellent global views of the sheets and their reorganization during development, the mechanism of image formation for embedment-free sections does not permit evaluation of the sheets at high resolution.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


2021 ◽  
Vol 41 (01) ◽  
pp. 014-021
Author(s):  
Markus Bender ◽  
Raghavendra Palankar

AbstractPlatelet activation and aggregation are essential to limit blood loss at sites of vascular injury but may also lead to occlusion of diseased vessels. The platelet cytoskeleton is a critical component for proper hemostatic function. Platelets change their shape after activation and their contractile machinery mediates thrombus stabilization and clot retraction. In vitro studies have shown that platelets, which come into contact with proteins such as fibrinogen, spread and first form filopodia and then lamellipodia, the latter being plate-like protrusions with branched actin filaments. However, the role of platelet lamellipodia in hemostasis and thrombus formation has been unclear until recently. This short review will briefly summarize the recent findings on the contribution of the actin cytoskeleton and lamellipodial structures to platelet function.


2020 ◽  
Vol 45 (4) ◽  
pp. 351-357
Author(s):  
Bilge Özerman Edis ◽  
Muhammet Bektaş ◽  
Rüstem Nurten

AbstractObjectivesCardiac damage in patient with diphtheritic myocarditis is reported as the leading cause of mortality. Diphtheria toxin (DTx) is a well-known bacterial toxin inducing various cytotoxic effects. Mainly, catalytic fragment inhibits protein synthesis, induces cytotoxicity, and depolymerizes actin filaments. In this study, we aimed to demonstrate the extent of myofibrillar damage under DTx treatment to porcine cardiac tissue samples.MethodsTissue samples were incubated with DTx for 1–3 h in culture conditions. To analyze whole toxin (both fragments) distribution, conjugation of DTx with FITC was performed. Measurements were carried out with fluorescence spectrophotometer before and after dialysis. Immunofluorescence microscopy was used to show localization of DTx-FITC (15 nM) on cardiac tissue incubated for 2 h. Ultrastructural characterization of cardiac tissue samples treated with DTx (15 or 150 nM) was performed with transmission electron microscopy.ResultsDTx exerts myofibrillar disorganization. Myofilament degeneration, mitochondrial damage, vacuolization, and abundant lipid droplets were determined with 150 nM of DTx treatment.ConclusionsThis finding is an addition to depolymerization of actin filaments as a result of the DTx-actin interactions in in vitro conditions, indicating that myofilament damage can occur with DTx directly besides protein synthesis inhibition. Ultrastructural results support the importance of filamentous actin degeneration at diphtheritic myocarditis.


2021 ◽  
Vol 11 (2) ◽  
pp. 92 ◽  
Author(s):  
Babita Shashni ◽  
Yukio Nagasaki

Elevated reactive oxygen species (ROS) have been implicated as significant for cancer survival by functioning as oncogene activators and secondary messengers. Hence, the attenuation of ROS-signaling pathways in cancer by antioxidants seems a suitable therapeutic regime for targeting cancers. Low molecular weight (LMW) antioxidants such as 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO), although they are catalytically effective in vitro, exerts off-target effects in vivo due to their size, thus, limiting their clinical use. Here, we discuss the superior impacts of our TEMPO radical-conjugated self-assembling antioxidant nanoparticle (RNP) compared to the LMW counterpart in terms of pharmacokinetics, therapeutic effect, and adverse effects in various cancer models.


2012 ◽  
Vol 102 (3) ◽  
pp. 186a
Author(s):  
Jinzhou Yuan ◽  
Anand Pillarisetti ◽  
Haim H. Bau ◽  
Yale E. Goldman

Sign in / Sign up

Export Citation Format

Share Document