scholarly journals DDK has a primary role in processing stalled replication forks to initiate downstream checkpoint signaling

2017 ◽  
Author(s):  
Nanda Kumar Sasi ◽  
Flavie Coquel ◽  
Yea-Lih Lin ◽  
Jeffrey P MacKeigan ◽  
Philippe Pasero ◽  
...  

AbstractCDC7-DBF4 kinase (DDK) is required to initiate DNA replication in eukaryotes by activating the replicative MCM helicase. DDK has also been reported to have diverse and sometimes conflicting roles in the replication checkpoint response in various organisms but the underlying mechanisms are far from settled. Here we show that human DDK promotes limited resection of newly synthesized DNA at stalled replication forks or sites of DNA damage to initiate replication checkpoint signaling. DDK is also required for efficient fork restart and G2/M cell cycle arrest. DDK exhibits genetic interactions with the ssDNA exonuclease EXO1, and we show that EXO1 is also required for nascent strand degradation following exposure to HU, raising the possibility that DDK regulates EXO1 directly. Thus, DDK has a primary and previously undescribed role in the replication checkpoint to promote ssDNA accumulation at stalled forks, which is required to initiate a robust checkpoint response and cell cycle arrest to maintain genome integrity.

2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


2014 ◽  
Vol 77 (7) ◽  
pp. 1753-1757 ◽  
Author(s):  
Lin Du ◽  
April L. Risinger ◽  
Jarrod B. King ◽  
Douglas R. Powell ◽  
Robert H. Cichewicz

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1790
Author(s):  
Katarzyna Malarz ◽  
Jacek Mularski ◽  
Michał Kuczak ◽  
Anna Mrozek-Wilczkiewicz ◽  
Robert Musiol

Sulfonates, unlike their derivatives, sulphonamides, have rarely been investigated for their anticancer activity. Unlike the well-known sulphonamides, esters are mainly used as convenient intermediates in a synthesis. Here, we present the first in-depth investigation of quinazoline sulfonates. A small series of derivatives were synthesized and tested for their anticancer activity. Based on their structural similarity, these compounds resemble tyrosine kinase inhibitors and the p53 reactivator CP-31398. Their biological activity profile, however, was more related to sulphonamides because there was a strong cell cycle arrest in the G2/M phase. Further investigation revealed a multitargeted mechanism of the action that corresponded to the p53 protein status in the cell. Although the compounds expressed a high submicromolar activity against leukemia and colon cancers, pancreatic cancer and glioblastoma were also susceptible. Apoptosis and autophagy were confirmed as the cell death modes that corresponded with the inhibition of metabolic activity and the activation of the p53-dependent and p53-independent pathways. Namely, there was a strong activation of the p62 protein and GADD44. Other proteins such as cdc2 were also expressed at a higher level. Moreover, the classical caspase-dependent pathway in leukemia was observed at a lower concentration, which again confirmed a multitargeted mechanism. It can therefore be concluded that the sulfonates of quinazolines can be regarded as promising scaffolds for developing anticancer agents.


2004 ◽  
Vol 48 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Weiqun Wang ◽  
Peter C. VanAlstyne ◽  
Kimberly A. Irons ◽  
She Chen ◽  
Jeanne W. Stewart ◽  
...  

2012 ◽  
Vol 22 (5) ◽  
pp. 2114-2118 ◽  
Author(s):  
Guanghui Wang ◽  
Xiaoyu Guo ◽  
Haifeng Chen ◽  
Ting Lin ◽  
Yang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document