scholarly journals The Function of the COPII Gene Paralogs SEC23A and SEC23B Are Interchangeable In Vivo

2017 ◽  
Author(s):  
Rami Khoriaty ◽  
Geoffrey Hesketh ◽  
Amélie Bernard ◽  
Angela C. Weyand ◽  
Dattatreya Mellacheruvu ◽  
...  

SEC23 is a core component of the coat protein-complex II (COPII)-coated vesicle, which mediates transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi1-3. Mammals express 2 paralogs for SEC23 (SEC23A and SEC23B). Though the SEC23 gene duplication dates back >500 million years, both SEC23’s are ~85% identical at the amino acid sequence level. In humans, deficiency for SEC23A or SEC23B results in cranio-lenticulo-sutural dysplasia4 or congenital dyserythropoietic anemia type II (CDAII), respectively5. The disparate human syndromes and reports of secretory cargos with apparent paralog-specific dependence6,7, suggest unique functions for the two SEC23 paralogs. Here we show indistinguishable intracellular interactomes for human SEC23A and SEC23B, complementation of yeast SEC23 by both human and murine SEC23A/B paralogs, and the rescue of lethality resulting from Sec23b disruption in zebrafish by a Sec23a-expressing transgene. Finally, we demonstrate that the Sec23a coding sequence inserted into the endogenous murine Sec23b locus fully rescues the mortality and severe pancreatic phenotype previously reported with SEC23B-deficiency in the mouse8-10. Taken together, these data indicate that the disparate phenotypes of SEC23A and SEC23B deficiency likely result from evolutionary shifts in gene expression program rather than differences in protein function, a paradigm likely applicable to other sets of paralogous genes. These findings also suggest the potential for increased expression of SEC23A as a novel therapeutic approach to the treatment of CDAII, with potential relevance to other disorders due to mutations in paralogous genes.


2018 ◽  
Vol 115 (33) ◽  
pp. E7748-E7757 ◽  
Author(s):  
Rami Khoriaty ◽  
Geoffrey G. Hesketh ◽  
Amélie Bernard ◽  
Angela C. Weyand ◽  
Dattatreya Mellacheruvu ◽  
...  

Approximately one-third of the mammalian proteome is transported from the endoplasmic reticulum-to-Golgi via COPII-coated vesicles. SEC23, a core component of coat protein-complex II (COPII), is encoded by two paralogous genes in vertebrates (Sec23a and Sec23b). In humans, SEC23B deficiency results in congenital dyserythropoietic anemia type-II (CDAII), while SEC23A deficiency results in a skeletal phenotype (with normal red blood cells). These distinct clinical disorders, together with previous biochemical studies, suggest unique functions for SEC23A and SEC23B. Here we show indistinguishable intracellular protein interactomes for human SEC23A and SEC23B, complementation of yeast Sec23 by both human and murine SEC23A/B, and rescue of the lethality of sec23b deficiency in zebrafish by a sec23a-expressing transgene. We next demonstrate that a Sec23a coding sequence inserted into the murine Sec23b locus completely rescues the lethal SEC23B-deficient pancreatic phenotype. We show that SEC23B is the predominantly expressed paralog in human bone marrow, but not in the mouse, with the reciprocal pattern observed in the pancreas. Taken together, these data demonstrate an equivalent function for SEC23A/B, with evolutionary shifts in the transcription program likely accounting for the distinct phenotypes of SEC23A/B deficiency within and across species, a paradigm potentially applicable to other sets of paralogous genes. These findings also suggest that enhanced erythroid expression of the normal SEC23A gene could offer an effective therapeutic approach for CDAII patients.



2020 ◽  
Author(s):  
Qinfang Liu ◽  
Judith Bautista-Gomez ◽  
Daniel A. Higgins ◽  
Jianzhong Yu ◽  
Yulan Xiong

AbstractRecent genetic evidence revealed endocytic pathway plays a major role in Parkinson’s disease (PD). However, the molecular mechanism is poorly understood. Here we report that LRRK2, the most genetic cause of PD, binds to and phosphorylates AP2M1, the core component of endocytosis recently implicated in PD risk. Both knockout and overexpression of LRRK2 cause abnormal AP2M1 phosphorylation cycle and in turn endocytic defects. Mechanistically, knockout of LRRK2 decreases AP2M1 phosphorylation required for the initial clathrin coated vesicle (CCV) formation while LRRK2 overexpression inhibits AP2M1 uncoating for entering into a new cycle of CCV formation. Our study also uncovered a novel tissue-specific regulation of AP2M1 phosphorylation by LRRK2. Further, we found LRRK2 phosphorylation on AP2M1 mediates LRRK2-induced neuronal toxicity both in vitro and in vivo. Importantly, AP2M1 phosphorylation levels are elevated in PD patient fibroblasts. Together, our study provides a direct mechanistic link between LRRK2, AP2 and endocytosis in PD pathogenesis.



1993 ◽  
Vol 121 (4) ◽  
pp. 743-750 ◽  
Author(s):  
S High ◽  
S S Andersen ◽  
D Görlich ◽  
E Hartmann ◽  
S Prehn ◽  
...  

We have identified membrane components which are adjacent to type I and type II signal-anchor proteins during their insertion into the membrane of the ER. Using two different cross-linking approaches a 37-38-kD nonglycosylated protein, previously identified as P37 (High, S., D. Görlich, M. Wiedmann, T. A. Rapoport, and B. Dobberstein. 1991. J. Cell Biol. 113:35-44), was found adjacent to all the membrane inserted nascent chains used in this study. On the basis of immunoprecipitation, this ER protein was shown to be identical to the recently identified mammalian Sec61 protein. Thus, Sec61p is the principal cross-linking partner of both type I and type II signal-anchor proteins during their membrane insertion (this work), and of secretory proteins during their translocation (Görlich, D., S. Prehn, E. Hartmann, K.-U. Kalies, and T. A. Rapoport. 1992. Cell. 71:489-503). We propose that membrane proteins of both orientations, and secretory proteins employ the same ER translocation sites, and that Sec61p is a core component of these sites.



2006 ◽  
Vol 17 (10) ◽  
pp. 4551-4563 ◽  
Author(s):  
Jill M. Harper ◽  
My-Hang Huynh ◽  
Isabelle Coppens ◽  
Fabiola Parussini ◽  
Silvia Moreno ◽  
...  

Propeptides regulate protein function and trafficking in many eukaryotic systems and have emerged as important features of regulated secretory proteins in parasites of the phylum Apicomplexa. Regulated protein secretion from micronemes and host cell invasion are inextricably linked and essential processes for the apicomplexan parasite Toxoplasma gondii. TgM2AP is a propeptide-containing microneme protein found in a heterohexameric complex with the microneme protein TgMIC2, a protein that has a demonstrated fundamental role in gliding motility and invasion. TgM2AP function is also central to these processes, because disruption of TgM2AP (m2apKO) results in secretory retention of TgMIC2, leading to reduced TgMIC2 secretion from the micronemes and impaired invasion. Because the TgM2AP propeptide is predicted to be processed in an intracellular site near where TgMIC2 is retained in m2apKO parasites, we hypothesized that the propeptide and its proteolytic removal influence trafficking and secretion of the complex. We found that proTgM2AP traffics through endosomal compartments and that deletion of the propeptide leads to defective trafficking of the complex within or near this site, resulting in aberrant processing and decreased secretion of TgMIC2, impaired invasion, and reduced virulence in vivo, mirroring the phenotypes observed in m2apKO parasites. In contrast, mutation of several cleavage site residues resulted in normal localization, but it affected the stability and secretion of the complex from the micronemes. Therefore, the propeptide and its cleavage site influence distinct aspects of TgMIC2–M2AP function, with both impacting the outcome of infection.



Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 80-80
Author(s):  
Rami Khoriaty ◽  
Angela Weyand ◽  
Geoffrey Hesketh ◽  
Amélie Bernard ◽  
Lesley Everett ◽  
...  

Abstract Congenital Dyserythropoietic Anemia type II (CDAII) is an autosomal recessive disease characterized by anemia and increased bone marrow (BM) bi/multi-nucleated erythroblasts. CDAII results from loss of function mutations in SEC23B encoding a core component of coat complex protein II (COPII) vesicles, which transport secretory proteins from the endoplasmic reticulum to the Golgi apparatus. Despite the identification of the genetic cause of CDAII, the pathophysiology of the disease remains unknown. Morpholino-induced SEC23B deficiency in zebrafish (ZF) has been previously reported to result in an erythroid phenotype mimicking CDAII (Shwartz et al, Nature genetics 2009), suggesting conservation of the underlying CDAII mechanism from fish to humans. Thus, we were puzzled to observe the absence of anemia or other CDAII characteristics in mice with erythroid specific (EpoR -Cre) and pan-hematopoietic (Vav1 -Cre) SEC23B deficiency (Khoriaty et al, MBC and Khoriaty et al, Sci Rep). To re-examine the ZF phenotype, we injected the morpholino targeting Sec23b into one-cell stage ZF embryos demonstrating no increase in circulating bi-nucleated erythroid cells, in contrast to the previous report. Given the variable knock-down that can result from morpholinos, we next generated ZF heterozygous for a 53 bp deletion (Sec23b+/-) using CRISPR/Cas9 genome editing. Intercrosses between Sec23b+/- ZF demonstrated lethality of Sec23b-/- ZF between days 17-21. However, the percentage of circulating bi-nucleated erythrocytes observed at day 16 was indistinguishable between Sec23b-/- ZF and wildtype (WT) clutch mate controls. Mammals and fish express two paralogs for SEC23, SEC23A and SEC23B, encoding highly related (~85%) proteins. To investigate the different functions of SEC23A and SEC23B, we defined the SEC23A and SEC23B interactomes using "BioID" (proximity dependent biotinylation) in HEK293 cells expressing BirA*-tagged SEC23A, SEC23B, or GFP control. Surprisingly, SEC23A and SEC23B exhibit indistinguishable interactomes. We also demonstrated that both mouse and human SEC23 paralogs can complement SEC23 deficiency in yeast. Similarly, rescue of the Sec23b-/- lethal phenotype in ZF by a Sec23a transgene demonstrated at least partial functional overlap of SEC23A/SEC23B function in vertebrates. To extend these observations to mammals, we genetically engineered the murine Sec23a cDNA into the endogenous mouse genomic locus of Sec23b . We demonstrated that SEC23B-deficient mice (previously shown to die perinatally from pancreatic degeneration) are rescued by SEC23A, exhibiting normal survival and pancreas histology, with no abnormalities apparent on detailed hematologic and anatomic examination. The expression of SEC23A and SEC23B mRNAs in human and mouse BMs were examined by qRT-PCR. SEC23B is the predominantly expressed paralog in human BM, with greater levels of SEC23A and reduced SEC23B in mouse BM. We therefore hypothesized that mice with erythroid deficiency of SEC23A alone or combined SEC23A/SEC23B deficiency might exhibit an erythroid defect. We first generated mice with erythroid-specific SEC23A deficiency, with the latter mice exhibiting no anemia or other CDAII characteristic. In contrast, mice with combined erythroid SEC23A and SEC23B deficiency die at ~E12.5, exhibiting reduced size and appear white in color compared to their WT litter mate controls, consistent with requirement of SEC23 in the erythroid compartment. Taken together, these data suggest complete (or near complete) overlap in function between SEC23A and SEC23B, and suggest that therapies that increase the expression of either SEC23 paralog might prove effective in treating CDAII. This paradigm might also apply to other disorders due to mutations in paralogous genes. Finally, our findings also suggest that a switch in paralog expression could account for other disparate disease phenotypes observed between animal models and humans. Disclosures No relevant conflicts of interest to declare.



Diabetes ◽  
1993 ◽  
Vol 42 (5) ◽  
pp. 764-772 ◽  
Author(s):  
E. Bonora ◽  
R. C. Bonadonna ◽  
S. Del Prato ◽  
G. Gulli ◽  
A. Solini ◽  
...  
Keyword(s):  


2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.



2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Dawei Chen ◽  
Zhenguo Zhao ◽  
Lu Chen ◽  
Qinghua Li ◽  
Jixue Zou ◽  
...  

AbstractEmerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.



Sign in / Sign up

Export Citation Format

Share Document