scholarly journals Accurate allele frequencies from ultra-low coverage pool-seq samples in evolve-and-resequence experiments

2018 ◽  
Author(s):  
Susanne Tilk ◽  
Alan Bergland ◽  
Aaron Goodman ◽  
Paul Schmidt ◽  
Dmitri Petrov ◽  
...  

AbstractEvolve-and-resequence (E+R) experiments leverage next-generation sequencing technology to track the allele frequency dynamics of populations as they evolve. While previous work has shown that adaptive alleles can be detected by comparing frequency trajectories from many replicate populations, this power comes at the expense of high-coverage (>100x) sequencing of many pooled samples, which can be cost-prohibitive. Here, we show that accurate estimates of allele frequencies can be achieved with very shallow sequencing depths (<5x) via inference of known founder haplotypes in small genomic windows. This technique can be used to efficiently estimate frequencies for any number of bi-allelic SNPs in populations of any model organism founded with sequenced homozygous strains. Using both experimentally-pooled and simulated samples of Drosophila melanogaster, we show that haplotype inference can improve allele frequency accuracy by orders of magnitude for up to 50 generations of recombination, and is robust to moderate levels of missing data, as well as different selection regimes. Finally, we show that a simple linear model generated from these simulations can predict the accuracy of haplotype-derived allele frequencies in other model organisms and experimental designs. To make these results broadly accessible for use in E+R experiments, we introduce HAF-pipe, an open-source software tool for calculating haplotype-derived allele frequencies from raw sequencing data. Ultimately, by reducing sequencing costs without sacrificing accuracy, our method facilitates E+R designs with higher replication and resolution, and thereby, increased power to detect adaptive alleles.

2018 ◽  
Author(s):  
Ryan K Waples ◽  
Anders Albrechtsen ◽  
Ida Moltke

AbstractKnowledge of how individuals are related is important in many areas of research and numerous methods for inferring pairwise relatedness from genetic data have been developed. However, the majority of these methods were not developed for situations where data is limited. Specifically, most methods rely on the availability of population allele frequencies, the relative genomic position of variants, and accurate genotype data. But in studies of non-model organisms or ancient human samples, such data is not always available. Motivated by this, we present a new method for pairwise relatedness inference, which requires neither allele frequency information nor information on genomic position. Furthermore, it can be applied to both genotype data and to low-depth sequencing data where genotypes cannot be accurately called. We evaluate it using data from SNP arrays and low-depth sequencing from a range of human populations and show that it can be used to infer close familial relationships with a similar accuracy as a widely used method that relies on population allele frequencies. Additionally, we show that our method is robust to SNP ascertainment, which is important for application to a diverse range of populations and species.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Takumi Miura ◽  
Satoshi Yasuda ◽  
Yoji Sato

Abstract Background Next-generation sequencing (NGS) has profoundly changed the approach to genetic/genomic research. Particularly, the clinical utility of NGS in detecting mutations associated with disease risk has contributed to the development of effective therapeutic strategies. Recently, comprehensive analysis of somatic genetic mutations by NGS has also been used as a new approach for controlling the quality of cell substrates for manufacturing biopharmaceuticals. However, the quality evaluation of cell substrates by NGS largely depends on the limit of detection (LOD) for rare somatic mutations. The purpose of this study was to develop a simple method for evaluating the ability of whole-exome sequencing (WES) by NGS to detect mutations with low allele frequency. To estimate the LOD of WES for low-frequency somatic mutations, we repeatedly and independently performed WES of a reference genomic DNA using the same NGS platform and assay design. LOD was defined as the allele frequency with a relative standard deviation (RSD) value of 30% and was estimated by a moving average curve of the relation between RSD and allele frequency. Results Allele frequencies of 20 mutations in the reference material that had been pre-validated by droplet digital PCR (ddPCR) were obtained from 5, 15, 30, or 40 G base pair (Gbp) sequencing data per run. There was a significant association between the allele frequencies measured by WES and those pre-validated by ddPCR, whose p-value decreased as the sequencing data size increased. By this method, the LOD of allele frequency in WES with the sequencing data of 15 Gbp or more was estimated to be between 5 and 10%. Conclusions For properly interpreting the WES data of somatic genetic mutations, it is necessary to have a cutoff threshold of low allele frequencies. The in-house LOD estimated by the simple method shown in this study provides a rationale for setting the cutoff.


2021 ◽  
Author(s):  
Michael Schneider ◽  
Asis Shrestha ◽  
Agim Ballvora ◽  
Jens Leon

Abstract BackgroundThe identification of environmentally specific alleles and the observation of evolutional processes is a goal of conservation genomics. By generational changes of allele frequencies in populations, questions regarding effective population size, gene flow, drift, and selection can be addressed. The observation of such effects often is a trade-off of costs and resolution, when a decent sample of genotypes should be genotyped for many loci. Pool genotyping approaches can derive a high resolution and precision in allele frequency estimation, when high coverage sequencing is utilized. Still, pool high coverage pool sequencing of big genomes comes along with high costs.ResultsHere we present a reliable method to estimate a barley population’s allele frequency at low coverage sequencing. Three hundred genotypes were sampled from a barley backcross population to estimate the entire population’s allele frequency. The allele frequency estimation accuracy and yield were compared for three next generation sequencing methods. To reveal accurate allele frequency estimates on a low coverage sequencing level, a haplotyping approach was performed. Low coverage allele frequency of positional connected single polymorphisms were aggregated to a single haplotype allele frequency, resulting in two to 271 times higher depth and increased precision. We compared different haplotyping tactics, showing that gene and chip marker-based haplotypes perform on par or better than simple contig haplotype windows. The comparison of multiple pool samples and the referencing against an individual sequencing approach revealed whole genome pool resequencing having the highest correlation to individual genotyping (up to 0.97), while transcriptomics and genotyping by sequencing indicated higher error rates and lower correlations.ConclusionUsing the proposed method allows to identify the allele frequency of populations with high accuracy at low cost. This is particularly interesting for conservation genomics in species with big genomes, like barley or wheat. Whole genome low coverage resequencing at 10x coverage can deliver a highly accurate estimation of the allele frequency, when a loci-based haplotyping approach is applied. Using annotated haplotypes allows to capitalize from biological background and statistical robustness.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Maria Muñoz-Benavent ◽  
Felix Hartkopf ◽  
Tim Van Den Bossche ◽  
Vitor C Piro ◽  
Carlos García-Ferris ◽  
...  

Abstract The study of bacterial symbioses has grown exponentially in the recent past. However, existing bioinformatic workflows of microbiome data analysis do commonly not integrate multiple meta-omics levels and are mainly geared toward human microbiomes. Microbiota are better understood when analyzed in their biological context; that is together with their host or environment. Nevertheless, this is a limitation when studying non-model organisms mainly due to the lack of well-annotated sequence references. Here, we present gNOMO, a bioinformatic pipeline that is specifically designed to process and analyze non-model organism samples of up to three meta-omics levels: metagenomics, metatranscriptomics and metaproteomics in an integrative manner. The pipeline has been developed using the workflow management framework Snakemake in order to obtain an automated and reproducible pipeline. Using experimental datasets of the German cockroach Blattella germanica, a non-model organism with very complex gut microbiome, we show the capabilities of gNOMO with regard to meta-omics data integration, expression ratio comparison, taxonomic and functional analysis as well as intuitive output visualization. In conclusion, gNOMO is a bioinformatic pipeline that can easily be configured, for integrating and analyzing multiple meta-omics data types and for producing output visualizations, specifically designed for integrating paired-end sequencing data with mass spectrometry from non-model organisms.


2018 ◽  
Author(s):  
Andrew Whalen ◽  
Gregor Gorjanc ◽  
John M Hickey

AbstractIn this paper we evaluate using genotype-by-sequencing (GBS) data to perform parentage assignment in lieu of traditional array data. The use of GBS data raises two issues: First, for low-coverage GBS data, it may not be possible to call the genotype at many loci, a critical first step for detecting opposing homozygous markers. Second, the amount of sequencing coverage may vary across individuals, making it challenging to directly compare the likelihood scores between putative parents. To address these issues we extend the probabilistic framework of Huisman (2017) and evaluate putative parents by comparing their (potentially noisy) genotypes to a series of proposal distributions. These distributions describe the expected genotype probabilities for the relatives of an individual. We assign putative parents as a parent if they are classified as a parent (as opposed to e.g., an unrelated individual), and if the assignment score passes a threshold. We evaluated this method on simulated data and found that (1) high-coverage GBS data performs similarly to array data and requires only a small number of markers to correctly assign parents and (2) low-coverage GBS data (as low as 0.1x) can also be used, provided that it is obtained across a large number of markers. When analysing the low-coverage GBS data, we also found a high number of false positives if the true parent is not contained within the list of candidate parents, but that this false positive rate can be greatly reduced by hand tuning the assignment threshold. We provide this parentage assignment method as a standalone program called AlphaAssign.


2015 ◽  
Author(s):  
Rudy Arthur ◽  
Jared O'Connell ◽  
Ole Schulz-Trieglaff ◽  
Anthony J Cox

Whole-genome low-coverage sequencing has been combined with linkage-disequilibrium (LD) based genotype refinement to accurately and cost-effectively infer genotypes in large cohorts of individuals. Most genotype refinement methods are based on hidden Markov models, which are accurate but computationally expensive. We introduce an algorithm that models LD using a simple multivariate Gaussian distribution. The key feature of our algorithm is its speed, it is hundreds of times faster than other methods on the same data set and its scaling behaviour is linear in the number of samples. We demonstrate the performance of the method on both low-coverage and high-coverage samples.


2021 ◽  
Author(s):  
Casia Nursyifa ◽  
Anna Bruniche-Olsen ◽  
Genis Garcia-Erill ◽  
Rasmus Heller ◽  
Anders Albrechtsen

Being able to assign sex to individuals and identify autosomal and sex-linked scaffolds are essential in most population genomic analyses. Non-model organisms often have genome assemblies at scaffold level and lack characterization of sex-linked scaffolds. Previous methods to identify sex and sex-linked scaffolds have relied on e.g. sequence similarity between the non-model organism and a closely related species or prior knowledge about the sex of the samples to identify sex-linked scaffolds. In the latter case, the difference in depth of coverage between the autosomes and the sex chromosomes are used. Here we present "Sex Assignment Through Coverage" (SATC), a method to identify sample sex and sex-linked scaffolds from NGS data. The method only requires a scaffold level reference assembly and sampling of both sexes with whole genome sequencing (WGS) data. We use the sequencing depth distribution across scaffolds to jointly identify: i) male and female individuals and ii) sex-linked scaffolds. This is achieved through projecting the scaffold depths into a low-dimensional space using principal component analysis (PCA) and subsequent Gaussian mixture clustering. We demonstrate the applicability of our method using data from five mammal species and a bird species complex. The method is open source and freely available at https://github.com/popgenDK/SATC


2018 ◽  
Vol 115 (27) ◽  
pp. 7069-7074 ◽  
Author(s):  
Lauren M. Schiebelhut ◽  
Jonathan B. Puritz ◽  
Michael N Dawson

Standing genetic variation enables or restricts a population’s capacity to respond to changing conditions, including the extreme disturbances expected to increase in frequency and intensity with continuing anthropogenic climate change. However, we know little about how populations might respond to extreme events with rapid genetic shifts, or how population dynamics may influence and be influenced by population genomic change. We use a range-wide epizootic, sea star wasting disease, that onset in mid-2013 and caused mass mortality in Pisaster ochraceus to explore how a keystone marine species responded to an extreme perturbation. We integrated field surveys with restriction site-associated DNA sequencing data to (i) describe the population dynamics of mortality and recovery, and (ii) compare allele frequencies in mature P. ochraceus before the disease outbreak with allele frequencies in adults and new juveniles after the outbreak, to identify whether selection may have occurred. We found P. ochraceus suffered 81% mortality in the study region between 2012 and 2015, and experienced a concurrent 74-fold increase in recruitment beginning in late 2013. Comparison of pre- and postoutbreak adults revealed significant allele frequency changes at three loci, which showed consistent changes across the large majority of locations. Allele frequency shifts in juvenile P. ochraceus (spawned from premortality adults) were consistent with those seen in adult survivors. Such parallel shifts suggest detectable signals of selection and highlight the potential for persistence of this change in subsequent generations, which may influence the resilience of this keystone species to future outbreaks.


2017 ◽  
Author(s):  
Max Shpak ◽  
Yang Ni ◽  
Jie Lu ◽  
Peter Müller

AbstractThe mean pairwise genetic distance among haplotypes is an estimator of the population mutation rate θ and a standard measure of variation in a population. With the advent of next-generation sequencing (NGS) methods, this and other population parameters can be estimated under different modes of sampling. One approach is to sequence individual genomes with high coverage, and to calculate genetic distance over all sample pairs. The second approach, typically used for microbial samples or for tumor cells, is sequencing a large number of pooled genomes with very low individual coverage. With low coverage, pairwise genetic distances are calculated across independently sampled sites rather than across individual genomes. In this study, we show that the variance in genetic distance estimates is reduced with low coverage sampling if the mean pairwise linkage disequilibrium weighted by allele frequencies is positive. Practically, this means that if on average the most frequent alleles over pairs of loci are in positive linkage disequilibrium, low coverage sequencing results in improved estimates of θ, assuming similar per-site read depths. We show that this result holds under the expected distribution of allele frequencies and linkage disequilibria for an infinite sites model at mutation-drift equilibrium. From simulations, we find that the conditions for reduced variance only fail to hold in cases where variant alleles are few and at very low frequency. These results are applied to haplotype frequencies from a lung cancer tumor to compute the weighted linkage disequilibria and the expected error in estimated genetic distance using high versus low coverage.


2014 ◽  
Vol 12 (06) ◽  
pp. 1442005
Author(s):  
Junfang Chen ◽  
Pavlo Lutsik ◽  
Ruslan Akulenko ◽  
Jörn Walter ◽  
Volkhard Helms

Whole-genome bisulfite sequencing (WGBS) is an approach of growing importance. It is the only approach that provides a comprehensive picture of the genome-wide DNA methylation profile. However, obtaining a sufficient amount of genome and read coverage typically requires high sequencing costs. Bioinformatics tools can reduce this cost burden by improving the quality of sequencing data. We have developed a statistical method Ajusted Local Kernel Smoother (AKSmooth) that can accurately and efficiently reconstruct the single CpG methylation estimate across the entire methylome using low-coverage bisulfite sequencing (Bi-Seq) data. We demonstrate the AKSmooth performance on the low-coverage (~ 4×) DNA methylation profiles of three human colon cancer samples and matched controls. Under the best set of parameters, AKSmooth-curated data showed high concordance with the gold standard high-coverage sample (Pearson 0.90), outperforming the popular analogous method. In addition, AKSmooth showed computational efficiency with runtime benchmark over 4.5 times better than the reference tool. To summarize, AKSmooth is a simple and efficient tool that can provide an accurate human colon methylome estimation profile from low-coverage WGBS data. The proposed method is implemented in R and is available at https://github.com/Junfang/AKSmooth .


Sign in / Sign up

Export Citation Format

Share Document