scholarly journals A metal-dependent switch moderates activity of the hexameric M17 aminopeptidases

2018 ◽  
Author(s):  
Nyssa Drinkwater ◽  
Wei Yang ◽  
Blake T. Riley ◽  
Brooke K. Hayes ◽  
Komagal Kannan Sivaraman ◽  
...  

AbstractThe metal-dependent M17 aminopeptidases are conserved throughout all kingdoms of life. The large enzyme family is characterised by a conserved binuclear metal center and a distinctive homohexameric arrangement. To understand the mechanistic role of the hexameric assembly, we undertook an investigation of the structure and dynamics of the M17 aminopeptidase from P. falciparum, PfA-M17. We describe a novel structure of PfA-M17, which shows that the active sites of each trimer are linked by a dynamic loop, and that the loop movement is coupled with a drastic rearrangement of the binuclear metal center and substrate-binding pocket. Molecular dynamics simulations, supported by biochemical analyses of PfA-M17 variants, demonstrate that this rearrangement is inherent to PfA-M17, and that the transition between the active and inactive states is part of a dynamic regulatory mechanism. Key to the mechanism is a re-modelling of the binuclear metal center, which occurs in response to a signal from the neighbouring active site, and serves to moderate the rate of proteolysis under different environmental conditions. Therefore, this work has identified the precise mechanism by which oligomerization contributes to PfA-M17 function. Further, it has described a novel role for metal cofactors in the regulation of enzymes with implications for the wide range of metalloenzymes that operate via a two-metal ion catalytic center including DNA processing enzymes and metalloproteases.

2015 ◽  
Vol 467 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Nishad Matange ◽  
Marjetka Podobnik ◽  
Sandhya S. Visweswariah

Calcineurin-like metallophosphoesterases (MPEs) form a large superfamily of binuclear metal-ion-centre-containing enzymes that hydrolyse phosphomono-, phosphodi- or phosphotri-esters in a metal-dependent manner. The MPE domain is found in Mre11/SbcD DNA-repair enzymes, mammalian phosphoprotein phosphatases, acid sphingomyelinases, purple acid phosphatases, nucleotidases and bacterial cyclic nucleotide phosphodiesterases. Despite this functional diversity, MPEs show a remarkably similar structural fold and active-site architecture. In the present review, we summarize the available structural, biochemical and functional information on these proteins. We also describe how diversification and specialization of the core MPE fold in various MPEs is achieved by amino acid substitution in their active sites, metal ions and regulatory effects of accessory domains. Finally, we discuss emerging roles of these proteins as non-catalytic protein-interaction scaffolds. Thus we view the MPE superfamily as a set of proteins with a highly conserved structural core that allows embellishment to result in dramatic and niche-specific diversification of function.


2018 ◽  
Author(s):  
Bryn C. Taylor ◽  
Christopher T. Lee ◽  
Rommie E. Amaro

AbstractCC Chemokine Receptor 2 (CCR2) is a part of the chemokine receptor family, an important class of therapeutic targets. These class A G-protein coupled receptors (GPCRs) are involved in mammalian signaling pathways and control cell migration toward endogenous CC chemokine ligands. Chemokine receptors and their associated ligands are involved in a wide range of diseases and thus have become important drug targets. Of particular interest is CCR2, which has been implicated in cancer, autoimmunity driven type-1 diabetes, diabetic nephropathy, multiple sclerosis, asthma, atherosclerosis, neuropathic pain, and rheumatoid arthritis. Although promising, CCR2 antagonists have been largely unsuccessful to date. Here, we investigate the effect of an orthosteric and an allosteric antagonist on CCR2 dynamics by coupling long timescale molecular dynamics simulations with Markov-state model theory. We find that the antagonists shift CCR2 into several stable inactive conformations that are distinct from the crystal structure conformation, and that they disrupt a continuous internal water and sodium ion pathway preventing transitions to an active-like state. Several of these stable conformations contain a putative drug binding pocket that may be amenable to targeting with another small molecule antagonist. In the absence of antagonists, the apo dynamics reveal intermediate conformations along the activation pathway that provide insight into the basal dynamics of CCR2, and may also be useful for future drug design.


2019 ◽  
Vol 116 (14) ◽  
pp. 6775-6783 ◽  
Author(s):  
Greg J. Dodge ◽  
Ashay Patel ◽  
Kara L. Jaremko ◽  
J. Andrew McCammon ◽  
Janet L. Smith ◽  
...  

Fatty acid biosynthesis in α- and γ-proteobacteria requires two functionally distinct dehydratases, FabA and FabZ. Here, mechanistic cross-linking facilitates the structural characterization of a stable hexameric complex of sixEscherichia coliFabZ dehydratase subunits with six AcpP acyl carrier proteins. The crystal structure sheds light on the divergent substrate selectivity of FabA and FabZ by revealing distinct architectures of the binding pocket. Molecular dynamics simulations demonstrate differential biasing of substrate orientations and conformations within the active sites of FabA and FabZ such that FabZ is preorganized to catalyze only dehydration, while FabA is primed for both dehydration and isomerization.


2015 ◽  
Author(s):  
◽  
Faez Iqbal Khan

Chitin, the second most abundant natural biopolymer, is composed of repeating units of N-acetyl-β-D-glucosamine and primarily forms the structural component of protective biological matrices such as fungal cell walls and exoskeletons of insects. Chitinases are a ubiquitous class of extracellular enzymes that have gained attention in the past few years due to their wide range of biotechnological applications, especially in the field of agriculture for bio-control of fungal phytopathogens. They play an important role in the defense of organisms against chitin-containing parasites by hydrolyzing the β-1,4-linkages in chitin and hence act as anti-fungal as well as anti-biofouling agents. Moreover, the effectiveness of conventional insecticides is increasingly compromised by the occurrence of resistance and thus, chitinases offer a potential alternative to the use of chemical fungicides. In recent years, thermostable enzymes isolated from thermophilic microorganisms have gained widespread attention in industrial, medical, environmental and biotechnological applications due to their inherent stability at high temperatures and a wide range of pH optima. Determination of the three- dimensional structure of a protein can provide important details about its biological functions and its mode of action. However, despite their significance, the precise three-dimensional structures of most of the chitinases, including those isolated from Thermomyces lanuginosus is not fully characterized so far. Hence, the main focus of the present study was to gain a better understanding of the structural features of chitinases obtained from this thermostable fungus using both experimental and computational techniques, and their relationship with their activity profiles. The genes encoding thermostable chitinase II from T. lanuginosus were isolated and cloned in both E. coli as well as the Pichia pastoris expression system. Analysis of the nucleotide sequences revealed that the chitinase II gene (1196 bp) encodes a 343 amino acid protein of molecular weight 36.65 kDa whereas the chitinase I gene (1538 bp) encodes a 400 amino acid protein of molecular weight 44.14 kDa. In silico protein modeling was helpful in predicting the 3D models of the novel chitinase II enzyme, followed by the prediction of its active sites. The presence of Glu176 was found to be essential for the activity of chitinase II. Similarly, analysis of chitinase I revealed several active sites in its structural framework. A 10 ns Molecular dynamics (MD) simulations was implemented to assess the conformational preferences of chitinases. The MD trajectories at different temperatures clearly revealed that the stability of the enzymes were maintained at higher temperatures. Additionally, a constant pH molecular dynamics simulations at a pH range 2-6 was performed to establish the optimum activity and stability profiles of chitinase I and chitinase II. For this purpose, the Molecular Dynamics simulations were carried out at fixed protonation states in an explicit water environment to evaluate the effect of the physiological pH on chitinase I and II enzymes obtained from T. lanuginosus. The results suggest a strong conformational pH dependence of chitinases. These enzymes retained their characteristic TIM Barrel fold at the respective protonated conditions, thus validated the experimental outcomes. Further, the different stability and flexibility predictions were used to assess the relation of point mutations and enzyme stabilities. Our results pave the way to engineer new and better thermostable enzymes.


2021 ◽  
Author(s):  
Paulius Kantakevičius ◽  
Calvin Mathiah ◽  
Linus Johannissen ◽  
Sam Hay

Metal ions are associated with a variety of proteins and play critical roles in a wide range of biochemical processes. There are multiple ways to study and quantify protein-metal ion interactions, including by molecular dynamics simulations. Recently, the Amber molecular mechanics forcefield was modified to include a 12-6-4LJ potential, which allows better description of non-bonded terms through the additional pairwise Cij coefficients. Here, we demonstrate a method of generating Cij parameters that allows parametrization of specific metal ion-ligating groups in order to tune binding energies computed by thermodynamic integration. The new Cij coefficients were tested on a series of chelators: EDTA, NTA, EGTA and the EF1 loop peptides from the proteins lanmodulin and calmodulin. The new parameters show significant improvements in computed binding energies relative to existing force fields and produce coordination numbers and ion-oxygen distances that are in good agreement with experimental values. This parametrization method should be extensible to a range of other systems and could be readily adapted to tune properties other than binding energies.


2018 ◽  
Author(s):  
Zishuo Cheng ◽  
Jamie VanPelt ◽  
Alexander Bergstrom ◽  
Christopher Bethel ◽  
Andrew Katko ◽  
...  

ABSTRACTIn an effort to evaluate whether a recently reported putative metallo-β-lactamase (MβL) contains a novel MβL active site, SPS-1 from Sediminispirochaeta smaragdinae was over-expressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equivalents of Zn (II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not β-lactam substrates with bulky substituents in the 6-7 position. Spectroscopic studies on Co (II)-substituted SPS-1 suggest a novel metal center in SPS-1, with reduced spin coupling between the metal ions and a novel Zn1 metal binding site. This site was confirmed with a crystal structure of the enzyme. The structure shows a Zn2 site that is similar that that in NDM-1 and other subclass B1 MβLs; however, the Zn1 metal ion is coordinated by 2 histidine residues and a water molecule, which is held in position by a hydrogen bond network. The Zn1 metal is displaced nearly 1 Å from the position reported in other MβLs. The structure also shows extended helices above the active site, which create a binding pocket that precludes the binding of substrates with large, bulky substituents in the 6/7 position of β-lactam antibiotics. This study reveals a novel metal binding site in MβLs, and suggests that the targeting of metal binding sites in MβLs with inhibitors is now more challenging with the identification of this new MβL.


2020 ◽  
Author(s):  
Robert Stepic ◽  
Lara Jurković ◽  
Ksenia Klementyeva ◽  
Marko Ukrainczyk ◽  
Matija Gredičak ◽  
...  

In many living organisms, biomolecules interact favorably with various surfaces of calcium carbonate. In this work, we have considered the interactions of aspartate (Asp) derivatives, as models of complex biomolecules, with calcite. Using kinetic growth experiments, we have investigated the inhibition of calcite growth by Asp, Asp2 and Asp3.This entailed the determination of a step-pinning growth regime as well as the evaluation of the adsorption constants and binding free energies for the three species to calcite crystals. These latter values are compared to free energy profiles obtained from fully atomistic molecular dynamics simulations. When using a flat (104) calcite surface in the models, the measured trend of binding energies is poorly reproduced. However, a more realistic model comprised of a surface with an island containing edges and corners, yields binding energies that compare very well with experiments. Surprisingly, we find that most binding modes involve the positively charged, ammonium group. Moreover, while attachment of the negatively charged carboxylate groups is also frequently observed, it is always balanced by the aqueous solvation of an equal or greater number of carboxylates. These effects are observed on all calcite features including edges and corners, the latter being associated with dominant affinities to Asp derivatives. As these features are also precisely the active sites for crystal growth, the experimental and theoretical results point strongly to a growth inhibition mechanism whereby these sites become blocked, preventing further attachment of dissolved ions and halting further growth.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


Sign in / Sign up

Export Citation Format

Share Document