scholarly journals Combining high resolution and exact calibration to boost statistical power: A well-calibrated score function for high-resolution MS2 data

2018 ◽  
Author(s):  
Andy Lin ◽  
J. Jeffry Howbert ◽  
William Stafford Noble

AbstractTo achieve accurate assignment of peptide sequences to observed fragmentation spectra, a shotgun proteomics database search tool must make good use of the very high resolution information produced by state-of-the-art mass spectrometers. However, making use of this information while also ensuring that the search engine’s scores are well calibrated—i.e., that the score assigned to one spectrum can be meaningfully compared to the score assigned to a different spectrum—has proven to be challenging. Here, we describe a database search score function, the “residue evidence” (res-ev) score, that achieves both of these goals simultaneously. We also demonstrate how to combine calibrated res-ev scores with calibrated XCorr scores to produce a “combined p-value” score function. We provide a benchmark consisting of four mass spectrometry data sets, which we use to compare the combined p-value to the score functions used by several existing search engines. Our results suggest that the combined p-value achieves state-of-the-art performance, generally outperforming MS Amanda and Morpheus and performing comparably to MS-GF+. The res-ev and combined p-value score functions are freely available as part of the Tide search engine in the Crux mass spectrometry toolkit (http://crux.ms).

2008 ◽  
Vol 7 (1) ◽  
pp. 276-285 ◽  
Author(s):  
Dale F. McLerran ◽  
Ziding Feng ◽  
O. John Semmes ◽  
Lisa Cazares ◽  
Timothy W. Randolph

2020 ◽  
Author(s):  
Ben Orsburn

AbstractThe production of hemp and products derived from these plants that contain zero to trace amounts of the psychoactive cannabinoid tetrahydrocannabidiol (THC) is a rapidly growing new market in the United States. The most common products today contain relatively high concentrations of the compound cannabidiol (CBD). Recent studies have investigated commercial CBD products using targeted assays and have found varying degrees of misrepresentation and contamination of these products. To expand on previous studies, we demonstrate the application of non-targeted screening by high resolution accurate mass spectrometry to more comprehensively identify potential adulterants and contaminants. We find evidence to support previous conclusions that CBD products are commonly misrepresented in terms of cannabinoid concentrations present. Specifically, we observe a wide variation in relative THC concentrations across the product tested, with some products containing 10-fold more relative signal than others. In addition, we find that several products appear to be purposely adulterated with over the counter drugs such as caffeine and melatonin. We also observe multiple small molecule contaminants that are typically linked to improper production or packaging methods in food or pharmaceutical production. Finally, we present high resolution accurate mass spectrometry data and tandem MS/MS fragments supporting the presence of trace amounts of fluorofentanyl in a single mail order CBD product. We conclude that the CBD industry would benefit from more robust testing regulations and that the cannabis testing industry, in general, would benefit from the use of non-targeted screening technologies.


2018 ◽  
Vol 178 ◽  
pp. 129-139 ◽  
Author(s):  
Arthur T. Zielinski ◽  
Ivan Kourtchev ◽  
Claudio Bortolini ◽  
Stephen J. Fuller ◽  
Chiara Giorio ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pan Fang ◽  
Yanlong Ji ◽  
Ivan Silbern ◽  
Carmen Doebele ◽  
Momchil Ninov ◽  
...  

Abstract Regulation of protein N-glycosylation is essential in human cells. However, large-scale, accurate, and site-specific quantification of glycosylation is still technically challenging. We here introduce SugarQuant, an integrated mass spectrometry-based pipeline comprising protein aggregation capture (PAC)-based sample preparation, multi-notch MS3 acquisition (Glyco-SPS-MS3) and a data-processing tool (GlycoBinder) that enables confident identification and quantification of intact glycopeptides in complex biological samples. PAC significantly reduces sample-handling time without compromising sensitivity. Glyco-SPS-MS3 combines high-resolution MS2 and MS3 scans, resulting in enhanced reporter signals of isobaric mass tags, improved detection of N-glycopeptide fragments, and lowered interference in multiplexed quantification. GlycoBinder enables streamlined processing of Glyco-SPS-MS3 data, followed by a two-step database search, which increases the identification rates of glycopeptides by 22% compared with conventional strategies. We apply SugarQuant to identify and quantify more than 5,000 unique glycoforms in Burkitt’s lymphoma cells, and determine site-specific glycosylation changes that occurred upon inhibition of fucosylation at high confidence.


Sign in / Sign up

Export Citation Format

Share Document