scholarly journals Secondary neurulation-fated cells in the tail bud undergo self-renewal and tubulogenesis regulated by a Sox2 gradient

2018 ◽  
Author(s):  
Teruaki Kawachi ◽  
Eisuke Shimokita ◽  
Ryosuke Tadokoro ◽  
Yoshiko Takahashi

AbstractDuring amniote development, anterior and posterior components of the neural tube form by primary neurulation (PN) and secondary neurulation (SN), respectively. Unlike PN, SN proceeds by the mesenchymal-to-epithelial transition of SN precursors in the tail bud, a critical structure for the axial elongation. Our direct cell labeling delineates non-overlapping territories of SN- and mesodermal precursors in the chicken tail bud. SN-fated precursors are further divided into self-renewing and differentiating cells, a decision regulated by graded expression levels of Sox2. Whereas Sox2 is confined to SN precursors, Brachyury (T) is widely and uniformly distributed in the tail bud, indicating that Sox2+/Brachyury+ cells are neural-fated and not mesodermal. These results uncover multiple steps during the neural posterior elongation, including precocious segregation of SN precursors, their self-renewal, and regulation by graded Sox 2.

Reproduction ◽  
2019 ◽  
Author(s):  
Parag Parekh ◽  
Thomas Xavier Garcia ◽  
Marie-claude Hofmann

Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.


Development ◽  
1974 ◽  
Vol 32 (2) ◽  
pp. 355-363
Author(s):  
A. F. Hughes ◽  
R. B. Freeman

The development of the caudal region of the neural tube is compared in tailed mammals with that of the chick and human. In rat, mouse, opossum and pig, the lumen of the cord extends caudally in an even manner, whereas in the chick and in man the addition of small cavities to the lumen results in a phase of irregular growth. In mammals with unreduced tails, the site of closure of the posterior neuropore is at the tip of the tail, whereas in pig, man and in the chick closure occurs before the formation of the tail-bud. The teratological implications of these findings are discussed.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 681-691
Author(s):  
W.H. Chen ◽  
G.M. Morriss-Kay ◽  
A.J. Copp

A role for all-trans-retinoic acid in spinal neurulation is suggested by: (1) the reciprocal domains of expression of the retinoic acid receptors RAR-beta and RAR-gamma in the region of the closed neural tube and open posterior neuropore, respectively, and (2) the preventive effect of maternally administered retinoic acid (5 mg/kg) on spinal neural tube defects in curly tail (ct/ct) mice. Using in situ hybridisation and computerised image analysis we show here that in ct/ct embryos, RAR-beta transcripts are deficient in the hindgut endoderm, a tissue whose proliferation rate is abnormal in the ct mutant, and RAR-gamma transcripts are deficient in the tail bud and posterior neuropore region. The degree of deficiency of RAR-gamma transcripts is correlated with the severity of delay of posterior neuropore closure. As early as 2 hours following RA treatment at 10 days 8 hours post coitum, i.e. well before any morphogenetic effects are detectable, RAR-beta expression is specifically upregulated in the hindgut endoderm, and the abnormal expression pattern of RAR-gamma is also altered. These results suggest that the spinal neural tube defects which characterise the curly tail phenotype may be due to interaction between the ct gene product and one or more aspects of the retinoic acid signalling pathway.


2020 ◽  
Author(s):  
Xinyue Li ◽  
Guangyu Ji ◽  
Juan Zhou ◽  
Jingyi Du ◽  
Xian Li ◽  
...  

Abstract Objective Early neural tube development in the embryo includes neural induction and self-renewal of neural stem cells (NSCs). The abnormal of neural tube development could lead to neural tube defects. The research on the mechanism of neural induction is the key to reveal the pathogenesis of the abnormal of neural tube. Though studies have confirmed a genetic component, the responsible mechanisms for the abnormal of neural tube are still largely unknown. Polycomb repressive complex 1 (PRC1) plays an important role in regulating early embryonic development, and has been sub-classified into six major complexes based on the presence of a Pcgf subunit. Pcgf1, as one of six Pcgf paralogs, is an important requirement in early embryonic brain development. Here, we intended to investigate the role and mechanism of Pcgf1 in early neural tube development of zebrafish embryos. Material and methods Morpholino (MO) antisense oligonucleotides were used to construct a Pcgf1 loss-of function zebrafish model. We analyzed the phenotype of zebrafish embryos and the expression of related genes in the process of neural induction by in situ hybridization, immunolabelling and RNA-sEq. The regulation of histone modifications on gene was detected by western blot and chromatin immunoprecipitation. Results In this study, we found that zebrafish embryos exhibited small head and reduced or even absence of telencephalon after inhibiting the expression of Pcgf1. Moreover, the neural induction process of zebrafish embryos was abnormal, and the subsequent NSCs self-renewal was inhibited under the inhibition of Pcgf1. RNA-seq and gene ontology (GO) analysis identified that the differentially expressed genes were enriched in many functional categories which related to the development phenotype. Finally, our results showed that Pcgf1 regulated the trimethylation of histone H3K27 in the Ngn1 and Otx2 promoter regions, and the levels of H3K4me3 at the promoters of Pou5f3 and Nanog. Conclusion Together, our data for the first time demonstrate that Pcgf1 plays an essential role in early neural induction phase through histone methylation in neural tube development. Our findings reveal a critical context-specific function for Pcgf1 in directing PRC1 to control cell fate.


Neurosurgery ◽  
2011 ◽  
Vol 68 (6) ◽  
pp. 1500-1519 ◽  
Author(s):  
Dachling Pang ◽  
John Zovickian ◽  
Greg S. Moes

Abstract BACKGROUND: Formation of the caudal spinal cord in vertebrates is by secondary neurulation, which begins with mesenchyme-epithelium transformation within a pluripotential blastema called the tail bud or caudal cell mass, from thence initiating an event sequence proceeding from the condensation of mesenchyme into a solid medullary cord, intrachordal lumen formation, to eventual partial degeneration of the cavitatory medullary cord until, in human and tailless mammals, only the conus and filum remain. OBJECTIVE: We describe a secondary neurulation malformation probably representing an undegenerated medullary cord that causes tethered cord symptoms. METHOD: We present 7 patients with a robust elongated neural structure continuous from the conus and extending to the dural cul-de-sac, complete with issuing nerve roots, which, except in 2 infants, produced neurological deficits by tethering. RESULTS: Intraoperative motor root and direct cord stimulation indicated that a large portion of this stout neural structure was “redundant” nonfunctional spinal cord below the true conus. Histopathology of the redundant cord resected at surgery showed a glioneuronal core with ependyma-lined lumen, nerve roots, and dorsal root ganglia, corroborating the picture of a blighted spinal cord. CONCLUSION: We propose that these redundant spinal cords are portions of the medullary cord normally destined to regress but are here retained because of late arrest of secondary neurulation before the degenerative phase. Because programmed cell death almost certainly plays a central role during degeneration, defective apoptosis may be the underlying mechanism.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3754-3754
Author(s):  
Hee-Don Chae ◽  
Kathleen Sakamoto

Abstract CREB (cAMP Response Element Binding protein) promotes cellular transformation of hematopoietic cells and proliferation of myeloid leukemia cells. However, the underlying mechanisms of CREB function in leukemic transformation and hematopoiesis are not fully understood. To address this, we have investigated the downstream pathways of CREB activation in proliferation using a human acute myeloid leukemia (AML) cell line KG1 cells knocked-down for CREB with specific shRNAs. The CREB-knockdown KG1 cells were significantly defective in proliferative capability compared to control cells [cell number after 4d (X105), seeding (1X105), control vs. CREB-knockdown: 34.18 +/– 1.27 vs. 14.52 +/– 0.46, n=3, p< 0.01, mean +/– SEM]. In order to characterize the specific role of CREB in cell proliferation, we analyzed cell cycle progression patterns of CREB-knockdown and control KG1 cells after release from mitotic arrest. Our results indicated that G1 to S phase transition as assessed by % S phase was impeded by CREB-knockdown [S phase (%), control vs. CREB-knockdown cells, 8h after release: 53.29 +/– 0.54 vs. 23.57 +/– 1.69; 12h: 66.92 +/– 0.63 vs. 45.16 +/– 0.50, n=3, p< 0.01, mean +/– SEM]. To identify potential CREB target genes, we chose several cell cycle related genes such as CCNE1, CCNA1, CCNB1 and PCNA and compared their RNA expression levels in the CREB-knockdown with those in control KG1 cells after release from mitotic arrest. To our surprise, we failed to detect any noticeable differences in the mRNA expression levels of those genes between CREB-knockdown and control KG1 cells. In an effort to search for CREB responsive target genes, we analyzed additional CREB targets previously identified from microarray data (Pellegrini et al BMC Cancer 2008). We found that expression of replication factor C3 (RFC3), a 38kDa subunit of the RFC complex involved in DNA replication and repair processes, was significantly reduced in CREB-knockdown cells compared to control cells [38 +/– 1% of control, n=3, p<0.01]. CREB-knockdown also inhibited RFC3 mRNA expression in U937 and HL60 AML cell lines. Consistent with these results, mRNA expression levels of RFC3 appeared to be closely correlated with those of CREB when we examined bone marrow samples obtained from AML patients [n = 16, Pearson coefficient = 0.6366, p = 0.0008]. Moreover, we found that CREB directly interacted with the CRE site in the RFC3 promoter region in vivo, as assessed by chromatin immunoprecipitation assays. Exogenous overexpression of RFC3 in CREB-knockdown KG1 cells restored the defective G1/S progression [S phase (%), CREB-knockdown vs. CREB-knockdown with RFC3 overexpression, 9h after release: 38.97 +/– 0.45 vs. 62.24 +/– 1.06; 12h: 48.12 +/– 0.60 vs. 67.70 +/– 1.15, n=3, p< 0.01, mean +/– SEM]. Taken together, these results suggest that RFC3 may act as a novel downstream oncogenic target of activated CREB in AML cells. We previously reported that CREB is a critical regulator of normal myelopoiesis (Cheng et al Blood 2008). To determine whether RFC3 could exert similar effects on normal hematopoiesis, we compared human umbilical cord blood derived CD34-positive cells with and without RFC3 overexpression for the capacity to form hematopoietic colonies. Overexpression of RFC3 in the CD34-positive cells resulted in significant increases of multi-potential CFU-GEMM colony numbers [without vs. with overexpression of RFC3 (per 1000 cells): 3.2 +/– 1.3 vs. 22.3 +/– 3.3, n=3, p< 0.01, mean +/– SEM]. The RFC3 effect on stimulating colony formation was magnified in secondary colony forming assays [without vs. with overexpression of RFC3 (per 100,000 cells): 10.7 +/– 3.5 vs. 180.2 +/– 44.4, n=3, p< 0.05, mean +/– SEM]. Since the formation of secondary colonies was derived mainly from residual stem/progenitor cell populations after long-term culture, RFC3 overexpression may enhance self-renewal of stem/progenitor cells. In conclusion, our results suggest that RFC3 is able to promote G1/S transition in a human AML cell line downstream of CREB activation. In addition, we provide evidence that RFC3 is involved in normal hematopoiesis and contributes to increased self-renewal potential of hematopoietic stem/progenitor cells. Our data demonstrate that RFC3 plays multiple roles in promoting AML cells proliferation as well as normal myelopoiesis through increasing the self-renewal potential of hematopoietic stem/progenitor cells in response to CREB activation. Disclosures: No relevant conflicts of interest to declare.


Stem Cells ◽  
2021 ◽  
Vol 39 (9) ◽  
pp. 1178-1191
Author(s):  
Xueyue Wang ◽  
Yan Ruan ◽  
Junlei Zhang ◽  
Yanping Tian ◽  
Lianlian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document