scholarly journals Myosin filaments reversibly generate large forces in cells

2018 ◽  
Author(s):  
James Lohner ◽  
Jean-Francois Rupprecht ◽  
Junquiang Hu ◽  
Nicola Mandriota ◽  
Mayur Saxena ◽  
...  

We present high resolution experiments performed on elementary contractile units in cells that challenge our current understanding of molecular motor force generation. The key features are the development of a force per motor considerably larger than forces measured in single molecule experiments, a force increase followed by relaxation controlled by a characteristic displacement rather than by a characteristic force, the observation of steps at half the actin filament period even though a large number of motors are at work in an elementary contractile unit. We propose a generic two-state model of molecular motor collections with hand-over-hand contractions and we find that these unexpected observations are spontaneously emerging features of a collective motor behavior.

Nanoscale ◽  
2021 ◽  
Author(s):  
Xinpeng Hu ◽  
Xiaodan Zhao ◽  
Iong Ying Loh ◽  
Jie Yan ◽  
Zhisong Wang

A key capability of molecular motors is sustainable force generation by a single motor copy. Direct force characterization at single-motor level is still missing for artificial molecular motors, though long...


2004 ◽  
Vol 359 (1452) ◽  
pp. 1829-1842 ◽  
Author(s):  
K. C. Holmes ◽  
D. R. Trentham ◽  
R. Simmons ◽  
H. Lee Sweeney ◽  
Anne Houdusse

It is 50 years since the sliding of actin and myosin filaments was proposed as the basis of force generation and shortening in striated muscle. Although this is now generally accepted, the detailed molecular mechanism of how myosin uses adenosine triphosphate to generate force during its cyclic interaction with actin is only now being unravelled. New insights have come from the unconventional myosins, especially myosin V. Myosin V is kinetically tuned to allow movement on actin filaments as a single molecule, which has led to new kinetic, mechanical and structural data that have filled in missing pieces of the actomyosin–chemo–mechanical transduction puzzle.


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


2021 ◽  
Vol 22 (13) ◽  
pp. 6709
Author(s):  
Xiao-Xuan Shi ◽  
Peng-Ye Wang ◽  
Hong Chen ◽  
Ping Xie

The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.


Nano Letters ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 3295-3301 ◽  
Author(s):  
Mike Filius ◽  
Sung Hyun Kim ◽  
Ivo Severins ◽  
Chirlmin Joo

Sign in / Sign up

Export Citation Format

Share Document