scholarly journals Effect of selection on bias and accuracy in genomic prediction of breeding values

2018 ◽  
Author(s):  
G. R. Gowane ◽  
Sang Hong Lee ◽  
Sam Clark ◽  
Nasir Moghaddar ◽  
Hawlader A Al-Mamun ◽  
...  

AbstractReference populations for genomic selection (GS) usually involve highly selected individuals, which may result in biased prediction of estimated genomic breeding values (GEBV). In the present study, bias and accuracy of GEBV were explored for various genetic models and prediction methods when using selected individuals for a reference. Data were simulated for an animal breeding program to compare Best Linear Unbiased Prediction of breeding values using pedigree based relationships (PBLUP), genomic relationships for genotyped animals only (GBLUP) and a Single Step approach (SSGBLUP), where information on genotyped individuals was used to infer a matrix H with relationships among all available genotyped and non-genotyped individuals that were linked through pedigree. In SSGBLUP, various weights (α=0.95, 0.80, 0.50) for the genomic relationship matrix (G) relative to the numerator relationship matrix (A) were applied to construct H and in another version (SSGBLUP_F), inbreeding was accounted for while computing A-1. With GBLUP, accuracy of GEBV prediction increased linearly with an increase in the number of animals selected in reference. For the scenario with no-selection and random mating (RR) prediction was unbiased. For GBLUP, lower accuracy and bias observed in the scenarios with selection and random mating (SR) or selection and positive assortative mating (SA), in which prediction bias increased when a smaller and highly selected proportion genotyped. Bias disappeared when all individuals were genotyped. SSGBLUP_F showed higher accuracy compared to GBLUP and bias of prediction was negligible even with selective genotyping. However, PBLUP and SSGBLUP showed bias in SA owing to not fully accounting for allele frequency changes because of selection of quantitative trait loci (QTL) with larger effects and also due to high inbreeding rate. In genetic models with fewer QTL but each with larger effect, predictions were less accurate and more biased for selection scenarios. Results suggest that prediction accuracy and bias is affected by the genetic architecture of the trait. Selective genotyping lead to significant bias in GEBV prediction. SSGBLUP with appropriate scaling of A and G matrices can provide accurate and less biased prediction but scaling requires careful consideration in populations under selection and with high levels of inbreeding.

2011 ◽  
Vol 93 (3) ◽  
pp. 203-219 ◽  
Author(s):  
KATHRYN E. KEMPER ◽  
DAVID L. EMERY ◽  
STEPHEN C. BISHOP ◽  
HUTTON ODDY ◽  
BENJAMIN J. HAYES ◽  
...  

SummaryGenetic resistance to gastrointestinal worms is a complex trait of great importance in both livestock and humans. In order to gain insights into the genetic architecture of this trait, a mixed breed population of sheep was artificially infected with Trichostrongylus colubriformis (n=3326) and then Haemonchus contortus (n=2669) to measure faecal worm egg count (WEC). The population was genotyped with the Illumina OvineSNP50 BeadChip and 48 640 single nucleotide polymorphism (SNP) markers passed the quality controls. An independent population of 316 sires of mixed breeds with accurate estimated breeding values for WEC were genotyped for the same SNP to assess the results obtained from the first population. We used principal components from the genomic relationship matrix among genotyped individuals to account for population stratification, and a novel approach to directly account for the sampling error associated with each SNP marker regression. The largest marker effects were estimated to explain an average of 0·48% (T. colubriformis) or 0·08% (H. contortus) of the phenotypic variance in WEC. These effects are small but consistent with results from other complex traits. We also demonstrated that methods which use all markers simultaneously can successfully predict genetic merit for resistance to worms, despite the small effects of individual markers. Correlations of genomic predictions with breeding values of the industry sires reached a maximum of 0·32. We estimate that effective across-breed predictions of genetic merit with multi-breed populations will require an average marker spacing of approximately 10 kbp.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Ali Nilforooshan ◽  
Dorian Garrick

Reduced models are equivalent models to the full model that enable reduction in the computational demand for solving the problem, here, mixed model equations for estimating breeding values of selection candidates. Since phenotyped animals provide data to the model, the aim of this study was to reduce animal models to those equations corresponding to phenotyped animals. Non-phenotyped ancestral animals have normally been included in analyses as they facilitate formation of the inverse numerator relationship matrix. However, a reduced model can exclude those animals and obtain identical solutions for the breeding values of the animals of interest. Solutions corresponding to non-phenotyped animals can be back-solved from the solutions of phenotyped animals and specific blocks of the inverted relationship matrix. This idea was extended to other forms of animal model and the results from each reduced model (and back-solving) were identical to the results from the corresponding full model. Previous studies have been mainly focused on reduced animal models that absorb equations corresponding to non-parents and solve equations only for parents of phenotyped animals. These two types of reduced animal model can be combined to formulate only equations corresponding to phenotyped parents of phenotyped progeny.


2018 ◽  
Vol 53 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Michel Marques Farah ◽  
Marina Rufino Salinas Fortes ◽  
Matthew Kelly ◽  
Laercio Ribeiro Porto-Neto ◽  
Camila Tangari Meira ◽  
...  

Abstract: The objective of this work was to evaluate the effects of genomic information on the genetic evaluation of hip height in Brahman cattle using different matrices built from genomic and pedigree data. Hip height measurements from 1,695 animals, genotyped with high-density SNP chip or imputed from 50 K high-density SNP chip, were used. The numerator relationship matrix (NRM) was compared with the H matrix, which incorporated the NRM and genomic relationship (G) matrix simultaneously. The genotypes were used to estimate three versions of G: observed allele frequency (HGOF), average minor allele frequency (HGMF), and frequency of 0.5 for all markers (HG50). For matrix comparisons, animal data were either used in full or divided into calibration (80% older animals) and validation (20% younger animals) datasets. The accuracy values for the NRM, HGOF, and HG50 were 0.776, 0.813, and 0.594, respectively. The NRM and HGOF showed similar minor variances for diagonal and off-diagonal elements, as well as for estimated breeding values. The use of genomic information resulted in relationship estimates similar to those obtained based on pedigree; however, HGOF is the best option for estimating the genomic relationship matrix and results in a higher prediction accuracy. The ranking of the top 20% animals was very similar for all matrices, but the ranking within them varies depending on the method used.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Øyvind Nordbø ◽  
Arne B. Gjuvsland ◽  
Leiv Sigbjørn Eikje ◽  
Theo Meuwissen

Abstract Background The main aim of single-step genomic predictions was to facilitate optimal selection in populations consisting of both genotyped and non-genotyped individuals. However, in spite of intensive research, biases still occur, which make it difficult to perform optimal selection across groups of animals. The objective of this study was to investigate whether incomplete genotype datasets with errors could be a potential source of level-bias between genotyped and non-genotyped animals and between animals genotyped on different single nucleotide polymorphism (SNP) panels in single-step genomic predictions. Results Incomplete and erroneous genotypes of young animals caused biases in breeding values between groups of animals. Systematic noise or missing data for less than 1% of the SNPs in the genotype data had substantial effects on the differences in breeding values between genotyped and non-genotyped animals, and between animals genotyped on different chips. The breeding values of young genotyped individuals were biased upward, and the magnitude was up to 0.8 genetic standard deviations, compared with breeding values of non-genotyped individuals. Similarly, the magnitude of a small value added to the diagonal of the genomic relationship matrix affected the level of average breeding values between groups of genotyped and non-genotyped animals. Cross-validation accuracies and regression coefficients were not sensitive to these factors. Conclusions Because, historically, different SNP chips have been used for genotyping different parts of a population, fine-tuning of imputation within and across SNP chips and handling of missing genotypes are crucial for reducing bias. Although all the SNPs used for estimating breeding values are present on the chip used for genotyping young animals, incompleteness and some genotype errors might lead to level-biases in breeding values.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Khalilisamani ◽  
P. C. Thomson ◽  
H. W. Raadsma ◽  
M. S. Khatkar

AbstractGenotypic errors, conflict between recorded genotype and the true genotype, can lead to false or biased population genetic parameters. Here, the effect of genotypic errors on accuracy of genomic predictions and genomic relationship matrix are investigated using a simulation study based on population and genomic structure comparable to black tiger prawn, Penaeus monodon. Fifty full-sib families across five generations with phenotypic and genotypic information on 53 K SNPs were simulated. Ten replicates of different scenarios with three heritability estimates, equal and unequal family contributions were generated. Within each scenario, four SNP densities and three genotypic error rates in each SNP density were implemented. Results showed that family contribution did not have a substantial impact on accuracy of predictions across different datasets. In the absence of genotypic errors, 3 K SNP density was found to be efficient in estimating the accuracy, whilst increasing the SNP density from 3 to 20 K resulted in a marginal increase in accuracy of genomic predictions using the current population and genomic parameters. In addition, results showed that the presence of even 10% errors in a 10 and 20 K SNP panel might not have a severe impact on accuracy of predictions. However, below 10 K marker density, even a 5% error can result in lower accuracy of predictions.


1985 ◽  
Vol 36 (3) ◽  
pp. 527 ◽  
Author(s):  
H-U Graser ◽  
K Hammond

A multiple-trait mixed model is defined for regular use in the Australian beef industry for the estimation of breeding values for continuous traits of sires used non-randomly across a number of herds and/or years. Maternal grandsires, the numerator relationship matrix, appropriate fixed effects, and the capacity to partition direct and maternal effects are incorporated in this parent model. The model was fitted to the National Beef Recording Scheme's data bank for three growth traits of the Australian Simental breed, viz 200-, 365- and 550-day weights. Estimates are obtained for the effects of sex, dam age, grade of dam, age of calf and breed of base dam. The range in estimated breeding value is reported for each trait, with 200-day weight being partitioned into 'calves' and 'daughters' calves', for the Simmental sires commonly used in Australia. Estimates of the fixed effects were large, and dam age, grade of dam and breed of base dam had an important influence on growth to 365 days of age. The faster growth of higher percentage Simmental calves to 200 days continued to 550 days. Estimates of genetic variance for the traits were lower than reported for overseas populations of Simmental cattle, and the genetic covariance between direct and maternal effects for 200-day weight was slightly positive.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 50-50
Author(s):  
Daniela Lourenco ◽  
Shogo Tsuruta ◽  
Ivan Pocrnic ◽  
Ignacy Misztal

Abstract Large-scale single-step GBLUP (ssGBLUP) evaluations rely on techniques to approximate or avoid the inversion of the genomic relationship matrix (G). The algorithm for proven and young (APY) was developed to create the inverse of G without explicit inversion, and relies on the clustering of genotyped animals into two groups, namely core and non-core. Although the correlation between GEBV from regular ssGBLUP and APY ssGBLUP is greater than 0.99 when the appropriate number of core animals is used, reranking is still observed when different core groups are used. We investigated which animals are more suitable to reranking and how the changes in GEBV can be minimized. Datasets from beef and dairy cattle, and pigs were used. The beef cattle data comprised phenotypes on 3 growth traits for up to 6.8M animals, pedigree for 8.2M, and genotypes for 66k. A dairy cattle data with 9M phenotypes for udder depth, 10M animals in pedigree, and 570K genotyped was used. The pig dataset had up to 770k phenotypes recorded on 4 traits, pedigree for 2.6M animals and genotypes for 54k. Investigations included using several different core groups, increasing the number of core animals beyond the optimal number obtained by the eigenvalue decomposition, and comparisons with GEBV from ssGBLUP with direct inversion (except for dairy). Additionally, observed changes were compared with possible changes based on SE of GEBV. In all datasets, larger changes in GEBV by using different core groups were observed for animals with lower accuracy. The observed changes relative to standard deviations of GEBV were, on average, 5% and ranged from 0 to 30%. Increasing the number of core animals beyond the optimal value helped to asymptotically reduce changes in GEBV. Although core-dependent changes in GEBV exist, they are small and can be reduced with larger core groups.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Richard Bernstein ◽  
Manuel Du ◽  
Andreas Hoppe ◽  
Kaspar Bienefeld

Abstract Background With the completion of a single nucleotide polymorphism (SNP) chip for honey bees, the technical basis of genomic selection is laid. However, for its application in practice, methods to estimate genomic breeding values need to be adapted to the specificities of the genetics and breeding infrastructure of this species. Drone-producing queens (DPQ) are used for mating control, and usually, they head non-phenotyped colonies that will be placed on mating stations. Breeding queens (BQ) head colonies that are intended to be phenotyped and used to produce new queens. Our aim was to evaluate different breeding program designs for the initiation of genomic selection in honey bees. Methods Stochastic simulations were conducted to evaluate the quality of the estimated breeding values. We developed a variation of the genomic relationship matrix to include genotypes of DPQ and tested different sizes of the reference population. The results were used to estimate genetic gain in the initial selection cycle of a genomic breeding program. This program was run over six years, and different numbers of genotyped queens per year were considered. Resources could be allocated to increase the reference population, or to perform genomic preselection of BQ and/or DPQ. Results Including the genotypes of 5000 phenotyped BQ increased the accuracy of predictions of breeding values by up to 173%, depending on the size of the reference population and the trait considered. To initiate a breeding program, genotyping a minimum number of 1000 queens per year is required. In this case, genetic gain was highest when genomic preselection of DPQ was coupled with the genotyping of 10–20% of the phenotyped BQ. For maximum genetic gain per used genotype, more than 2500 genotyped queens per year and preselection of all BQ and DPQ are required. Conclusions This study shows that the first priority in a breeding program is to genotype phenotyped BQ to obtain a sufficiently large reference population, which allows successful genomic preselection of queens. To maximize genetic gain, DPQ should be preselected, and their genotypes included in the genomic relationship matrix. We suggest, that the developed methods for genomic prediction are suitable for implementation in genomic honey bee breeding programs.


Sign in / Sign up

Export Citation Format

Share Document