scholarly journals Impact of genotypic errors with equal and unequal family contribution on accuracy of genomic prediction in aquaculture using simulation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Khalilisamani ◽  
P. C. Thomson ◽  
H. W. Raadsma ◽  
M. S. Khatkar

AbstractGenotypic errors, conflict between recorded genotype and the true genotype, can lead to false or biased population genetic parameters. Here, the effect of genotypic errors on accuracy of genomic predictions and genomic relationship matrix are investigated using a simulation study based on population and genomic structure comparable to black tiger prawn, Penaeus monodon. Fifty full-sib families across five generations with phenotypic and genotypic information on 53 K SNPs were simulated. Ten replicates of different scenarios with three heritability estimates, equal and unequal family contributions were generated. Within each scenario, four SNP densities and three genotypic error rates in each SNP density were implemented. Results showed that family contribution did not have a substantial impact on accuracy of predictions across different datasets. In the absence of genotypic errors, 3 K SNP density was found to be efficient in estimating the accuracy, whilst increasing the SNP density from 3 to 20 K resulted in a marginal increase in accuracy of genomic predictions using the current population and genomic parameters. In addition, results showed that the presence of even 10% errors in a 10 and 20 K SNP panel might not have a severe impact on accuracy of predictions. However, below 10 K marker density, even a 5% error can result in lower accuracy of predictions.

2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Pascal Duenk ◽  
Mario P. L. Calus ◽  
Yvonne C. J. Wientjes ◽  
Vivian P. Breen ◽  
John M. Henshall ◽  
...  

Following publication of original article [1], we noticed that there was an error: Eq. (3) on page 5 is the genomic relationship matrix that


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Cornelius Nel ◽  
Phillip Gurman ◽  
Andrew Swan ◽  
Julius van der Werf ◽  
Margaretha Snyman ◽  
...  

Abstract Background South Africa and Australia shares multiple important sheep breeds. For some of these breeds, genomic breeding values are provided to breeders in Australia, but not yet in South Africa. Combining genomic resources could facilitate development for across country selection, but the influence of population structures could be important to the compatability of genomic data from varying origins. The genetic structure within and across breeds, countries and strains was evaluated in this study by population genomic parameters derived from SNP-marker data. Populations were first analysed by breed and country of origin and then by subpopulations of South African and Australian Merinos. Results Mean estimated relatedness according to the genomic relationship matrix varied by breed (-0.11 to 0.16) and bloodline (-0.08 to 0.06) groups and depended on co-ancestry as well as recent genetic links. Measures of divergence across bloodlines (FST: 0.04–0.12) were sometimes more distant than across some breeds (FST: 0.05–0.24), but the divergence of common breeds from their across-country equivalents was weak (FST: 0.01–0.04). According to mean relatedness, FST, PCA and Admixture, the Australian Ultrafine line was better connected to the SA Cradock Fine Wool flock than with other AUS bloodlines. Levels of linkage disequilibrium (LD) between adjacent markers was generally low, but also varied across breeds (r2: 0.14–0.22) as well as bloodlines (r2: 0.15–0.19). Patterns of LD decay was also unique to breeds, but bloodlines differed only at the absolute level. Estimates of effective population size (Ne) showed genetic diversity to be high for the majority of breeds (Ne: 128–418) but also for bloodlines (Ne: 137–369). Conclusions This study reinforced the genetic complexity and diversity of important sheep breeds, especially the Merino breed. The results also showed that implications of isolation can be highly variable and extended beyond breed structures. However, knowledge of useful links across these population substructures allows for a fine-tuned approach in the combination of genomic resources. Isolation across country rarely proved restricting compared to other structures considered. Consequently, research into the accuracy of across-country genomic prediction is recommended.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Øyvind Nordbø ◽  
Arne B. Gjuvsland ◽  
Leiv Sigbjørn Eikje ◽  
Theo Meuwissen

Abstract Background The main aim of single-step genomic predictions was to facilitate optimal selection in populations consisting of both genotyped and non-genotyped individuals. However, in spite of intensive research, biases still occur, which make it difficult to perform optimal selection across groups of animals. The objective of this study was to investigate whether incomplete genotype datasets with errors could be a potential source of level-bias between genotyped and non-genotyped animals and between animals genotyped on different single nucleotide polymorphism (SNP) panels in single-step genomic predictions. Results Incomplete and erroneous genotypes of young animals caused biases in breeding values between groups of animals. Systematic noise or missing data for less than 1% of the SNPs in the genotype data had substantial effects on the differences in breeding values between genotyped and non-genotyped animals, and between animals genotyped on different chips. The breeding values of young genotyped individuals were biased upward, and the magnitude was up to 0.8 genetic standard deviations, compared with breeding values of non-genotyped individuals. Similarly, the magnitude of a small value added to the diagonal of the genomic relationship matrix affected the level of average breeding values between groups of genotyped and non-genotyped animals. Cross-validation accuracies and regression coefficients were not sensitive to these factors. Conclusions Because, historically, different SNP chips have been used for genotyping different parts of a population, fine-tuning of imputation within and across SNP chips and handling of missing genotypes are crucial for reducing bias. Although all the SNPs used for estimating breeding values are present on the chip used for genotyping young animals, incompleteness and some genotype errors might lead to level-biases in breeding values.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 50-50
Author(s):  
Daniela Lourenco ◽  
Shogo Tsuruta ◽  
Ivan Pocrnic ◽  
Ignacy Misztal

Abstract Large-scale single-step GBLUP (ssGBLUP) evaluations rely on techniques to approximate or avoid the inversion of the genomic relationship matrix (G). The algorithm for proven and young (APY) was developed to create the inverse of G without explicit inversion, and relies on the clustering of genotyped animals into two groups, namely core and non-core. Although the correlation between GEBV from regular ssGBLUP and APY ssGBLUP is greater than 0.99 when the appropriate number of core animals is used, reranking is still observed when different core groups are used. We investigated which animals are more suitable to reranking and how the changes in GEBV can be minimized. Datasets from beef and dairy cattle, and pigs were used. The beef cattle data comprised phenotypes on 3 growth traits for up to 6.8M animals, pedigree for 8.2M, and genotypes for 66k. A dairy cattle data with 9M phenotypes for udder depth, 10M animals in pedigree, and 570K genotyped was used. The pig dataset had up to 770k phenotypes recorded on 4 traits, pedigree for 2.6M animals and genotypes for 54k. Investigations included using several different core groups, increasing the number of core animals beyond the optimal number obtained by the eigenvalue decomposition, and comparisons with GEBV from ssGBLUP with direct inversion (except for dairy). Additionally, observed changes were compared with possible changes based on SE of GEBV. In all datasets, larger changes in GEBV by using different core groups were observed for animals with lower accuracy. The observed changes relative to standard deviations of GEBV were, on average, 5% and ranged from 0 to 30%. Increasing the number of core animals beyond the optimal value helped to asymptotically reduce changes in GEBV. Although core-dependent changes in GEBV exist, they are small and can be reduced with larger core groups.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andre C. Araujo ◽  
Paulo L. S. Carneiro ◽  
Hinayah R. Oliveira ◽  
Flavio S. Schenkel ◽  
Renata Veroneze ◽  
...  

The level of genetic diversity in a population is inversely proportional to the linkage disequilibrium (LD) between individual single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs), leading to lower predictive ability of genomic breeding values (GEBVs) in high genetically diverse populations. Haplotype-based predictions could outperform individual SNP predictions by better capturing the LD between SNP and QTL. Therefore, we aimed to evaluate the accuracy and bias of individual-SNP- and haplotype-based genomic predictions under the single-step-genomic best linear unbiased prediction (ssGBLUP) approach in genetically diverse populations. We simulated purebred and composite sheep populations using literature parameters for moderate and low heritability traits. The haplotypes were created based on LD thresholds of 0.1, 0.3, and 0.6. Pseudo-SNPs from unique haplotype alleles were used to create the genomic relationship matrix (G) in the ssGBLUP analyses. Alternative scenarios were compared in which the pseudo-SNPs were combined with non-LD clustered SNPs, only pseudo-SNPs, or haplotypes fitted in a second G (two relationship matrices). The GEBV accuracies for the moderate heritability-trait scenarios fitting individual SNPs ranged from 0.41 to 0.55 and with haplotypes from 0.17 to 0.54 in the most (Ne ≅ 450) and less (Ne < 200) genetically diverse populations, respectively, and the bias fitting individual SNPs or haplotypes ranged between −0.14 and −0.08 and from −0.62 to −0.08, respectively. For the low heritability-trait scenarios, the GEBV accuracies fitting individual SNPs ranged from 0.24 to 0.32, and for fitting haplotypes, it ranged from 0.11 to 0.32 in the more (Ne ≅ 250) and less (Ne ≅ 100) genetically diverse populations, respectively, and the bias ranged between −0.36 and −0.32 and from −0.78 to −0.33 fitting individual SNPs or haplotypes, respectively. The lowest accuracies and largest biases were observed fitting only pseudo-SNPs from blocks constructed with an LD threshold of 0.3 (p < 0.05), whereas the best results were obtained using only SNPs or the combination of independent SNPs and pseudo-SNPs in one or two G matrices, in both heritability levels and all populations regardless of the level of genetic diversity. In summary, haplotype-based models did not improve the performance of genomic predictions in genetically diverse populations.


2018 ◽  
Author(s):  
G. R. Gowane ◽  
Sang Hong Lee ◽  
Sam Clark ◽  
Nasir Moghaddar ◽  
Hawlader A Al-Mamun ◽  
...  

AbstractReference populations for genomic selection (GS) usually involve highly selected individuals, which may result in biased prediction of estimated genomic breeding values (GEBV). In the present study, bias and accuracy of GEBV were explored for various genetic models and prediction methods when using selected individuals for a reference. Data were simulated for an animal breeding program to compare Best Linear Unbiased Prediction of breeding values using pedigree based relationships (PBLUP), genomic relationships for genotyped animals only (GBLUP) and a Single Step approach (SSGBLUP), where information on genotyped individuals was used to infer a matrix H with relationships among all available genotyped and non-genotyped individuals that were linked through pedigree. In SSGBLUP, various weights (α=0.95, 0.80, 0.50) for the genomic relationship matrix (G) relative to the numerator relationship matrix (A) were applied to construct H and in another version (SSGBLUP_F), inbreeding was accounted for while computing A-1. With GBLUP, accuracy of GEBV prediction increased linearly with an increase in the number of animals selected in reference. For the scenario with no-selection and random mating (RR) prediction was unbiased. For GBLUP, lower accuracy and bias observed in the scenarios with selection and random mating (SR) or selection and positive assortative mating (SA), in which prediction bias increased when a smaller and highly selected proportion genotyped. Bias disappeared when all individuals were genotyped. SSGBLUP_F showed higher accuracy compared to GBLUP and bias of prediction was negligible even with selective genotyping. However, PBLUP and SSGBLUP showed bias in SA owing to not fully accounting for allele frequency changes because of selection of quantitative trait loci (QTL) with larger effects and also due to high inbreeding rate. In genetic models with fewer QTL but each with larger effect, predictions were less accurate and more biased for selection scenarios. Results suggest that prediction accuracy and bias is affected by the genetic architecture of the trait. Selective genotyping lead to significant bias in GEBV prediction. SSGBLUP with appropriate scaling of A and G matrices can provide accurate and less biased prediction but scaling requires careful consideration in populations under selection and with high levels of inbreeding.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Theo Meuwissen ◽  
Irene van den Berg ◽  
Mike Goddard

Abstract Background Whole-genome sequence (WGS) data are increasingly available on large numbers of individuals in animal and plant breeding and in human genetics through second-generation resequencing technologies, 1000 genomes projects, and large-scale genotype imputation from lower marker densities. Here, we present a computationally fast implementation of a variable selection genomic prediction method, that could handle WGS data on more than 35,000 individuals, test its accuracy for across-breed predictions and assess its quantitative trait locus (QTL) mapping precision. Methods The Monte Carlo Markov chain (MCMC) variable selection model (Bayes GC) fits simultaneously a genomic best linear unbiased prediction (GBLUP) term, i.e. a polygenic effect whose correlations are described by a genomic relationship matrix (G), and a Bayes C term, i.e. a set of single nucleotide polymorphisms (SNPs) with large effects selected by the model. Computational speed is improved by a Metropolis–Hastings sampling that directs computations to the SNPs, which are, a priori, most likely to be included into the model. Speed is also improved by running many relatively short MCMC chains. Memory requirements are reduced by storing the genotype matrix in binary form. The model was tested on a WGS dataset containing Holstein, Jersey and Australian Red cattle. The data contained 4,809,520 genotypes on 35,549 individuals together with their milk, fat and protein yields, and fat and protein percentage traits. Results The prediction accuracies of the Jersey individuals improved by 1.5% when using across-breed GBLUP compared to within-breed predictions. Using WGS instead of 600 k SNP-chip data yielded on average a 3% accuracy improvement for Australian Red cows. QTL were fine-mapped by locating the SNP with the highest posterior probability of being included in the model. Various QTL known from the literature were rediscovered, and a new SNP affecting milk production was discovered on chromosome 20 at 34.501126 Mb. Due to the high mapping precision, it was clear that many of the discovered QTL were the same across the five dairy traits. Conclusions Across-breed Bayes GC genomic prediction improved prediction accuracies compared to GBLUP. The combination of across-breed WGS data and Bayesian genomic prediction proved remarkably effective for the fine-mapping of QTL.


2011 ◽  
Vol 93 (3) ◽  
pp. 203-219 ◽  
Author(s):  
KATHRYN E. KEMPER ◽  
DAVID L. EMERY ◽  
STEPHEN C. BISHOP ◽  
HUTTON ODDY ◽  
BENJAMIN J. HAYES ◽  
...  

SummaryGenetic resistance to gastrointestinal worms is a complex trait of great importance in both livestock and humans. In order to gain insights into the genetic architecture of this trait, a mixed breed population of sheep was artificially infected with Trichostrongylus colubriformis (n=3326) and then Haemonchus contortus (n=2669) to measure faecal worm egg count (WEC). The population was genotyped with the Illumina OvineSNP50 BeadChip and 48 640 single nucleotide polymorphism (SNP) markers passed the quality controls. An independent population of 316 sires of mixed breeds with accurate estimated breeding values for WEC were genotyped for the same SNP to assess the results obtained from the first population. We used principal components from the genomic relationship matrix among genotyped individuals to account for population stratification, and a novel approach to directly account for the sampling error associated with each SNP marker regression. The largest marker effects were estimated to explain an average of 0·48% (T. colubriformis) or 0·08% (H. contortus) of the phenotypic variance in WEC. These effects are small but consistent with results from other complex traits. We also demonstrated that methods which use all markers simultaneously can successfully predict genetic merit for resistance to worms, despite the small effects of individual markers. Correlations of genomic predictions with breeding values of the industry sires reached a maximum of 0·32. We estimate that effective across-breed predictions of genetic merit with multi-breed populations will require an average marker spacing of approximately 10 kbp.


Sign in / Sign up

Export Citation Format

Share Document