scholarly journals Inactivation of the monofunctional peptidoglycan glycosyltransferase SgtB allowsStaphylococcus aureusto survive in the absence of lipoteichoic acid

2018 ◽  
Author(s):  
Eleni Karinou ◽  
Christopher F. Schuster ◽  
Manuel Pazos ◽  
Waldemar Vollmer ◽  
Angelika Gründling

AbstractThe cell wall ofStaphylococcus aureusis composed of peptidoglycan and the anionic polymers lipoteichoic acid (LTA) and wall teichoic acid. LTA is required for growth and normal cell morphology inS. aureus.Strains lacking LTA are usually only viable when grown under osmotically stabilizing conditions or after the acquisition of compensatory mutations. LTA negative suppressor strains with inactivating mutations ingdpP, resulting in an increase in intracellular c-di-AMP levels, have been described previously. Here, we sought to identify factors other than c-di-AMP that allowS. aureusto survive without LTA. LTA-negative strains able to grow in un-supplemented medium were obtained and found to contain mutations insgtB, mazE, clpXorvraT. The growth improvement through mutations inmazEandsgtBwas confirmed by complementation analysis. We also show that anS. aureus sgtBtransposon mutant, inactivated for the monofunctional peptidoglycan glycosyltransferase SgtB, displays a 4-fold increase in the MIC towards a number of cell wall-targeting antibiotics, suggesting that alteration in the peptidoglycan structure could help bacteria compensate for the lack of LTA. Muropeptide analysis of peptidoglycan isolated from a WT andsgtBmutant strains did not reveal any sizable alternations in the peptidoglycan structure. In contrast, the peptidoglycan isolated from an LTA-negativeltaSmutant strain showed a significant reduction in the fraction of highly crosslinked peptidoglycan, which was partially rescued in thesgtB/ltaSdouble mutant suppressor strain. Taken together, these data point towards an important function of LTA in cell wall integrity through its requirement for proper peptidoglycan assembly.ImportanceThe bacterial cell wall acts as primary defence against environmental insults such as changes in osmolarity. It is also a vulnerable structure as defects in its synthesis can lead to growth arrest or cell death. The important human pathogenStaphylococcus aureushas a typical Gram-positive cell wall, which consists of peptidoglycan and the anionic polymers lipoteichoic acid (LTA) and wall teichoic acid. Several clinically relevant antibiotics inhibit the synthesis of peptidoglycan; hence it and teichoic acids are considered attractive targets for the development of new antimicrobials. We show that LTA is required for efficient peptidoglycan crosslinking inS. aureusand inactivation of a peptidoglycan glycosyltransferase can partially rescue this defect, altogether revealing an intimate link between peptidoglycan and LTA synthesis.

2018 ◽  
Vol 201 (1) ◽  
Author(s):  
Eleni Karinou ◽  
Christopher F. Schuster ◽  
Manuel Pazos ◽  
Waldemar Vollmer ◽  
Angelika Gründling

ABSTRACTThe cell wall ofStaphylococcus aureusis composed of peptidoglycan and the anionic polymers lipoteichoic acid (LTA) and wall teichoic acid. LTA is required for growth and normal cell morphology inS. aureus. Strains lacking LTA are usually viable only when grown under osmotically stabilizing conditions or after the acquisition of compensatory mutations. LTA-negative suppressor strains with inactivating mutations ingdpP, which resulted in increased intracellular c-di-AMP levels, were described previously. Here, we sought to identify factors other than c-di-AMP that allowS. aureusto survive without LTA. LTA-negative strains able to grow in unsupplemented medium were obtained and found to contain mutations insgtB,mazE,clpX, orvraT. The growth improvement through mutations inmazEandsgtBwas confirmed by complementation analysis. We also showed that anS. aureussgtBtransposon mutant, with the monofunctional peptidoglycan glycosyltransferase SgtB inactivated, displayed a 4-fold increase in the MIC of oxacillin, suggesting that alterations in the peptidoglycan structure could help bacteria compensate for the lack of LTA. Muropeptide analysis of peptidoglycans isolated from a wild-type strain andsgtBmutant strain did not reveal any sizable alterations in the peptidoglycan structure. In contrast, the peptidoglycan isolated from an LTA-negativeltaSmutant strain showed a significant reduction in the fraction of highly cross-linked peptidoglycan, which was partially rescued in thesgtB ltaSdouble mutant suppressor strain. Taken together, these data point toward an important function of LTA in cell wall integrity through its necessity for proper peptidoglycan assembly.IMPORTANCEThe bacterial cell wall acts as a primary defense against environmental insults such as changes in osmolarity. It is also a vulnerable structure, as defects in its synthesis can lead to growth arrest or cell death. The important human pathogenStaphylococcus aureushas a typical Gram-positive cell wall, which consists of peptidoglycan and the anionic polymers LTA and wall teichoic acid. Several clinically relevant antibiotics inhibit the synthesis of peptidoglycan; therefore, it and teichoic acids are considered attractive targets for the development of new antimicrobials. We show that LTA is required for efficient peptidoglycan cross-linking inS. aureusand inactivation of a peptidoglycan glycosyltransferase can partially rescue this defect, together revealing an intimate link between peptidoglycan and LTA synthesis.


2006 ◽  
Vol 188 (7) ◽  
pp. 2463-2472 ◽  
Author(s):  
Angelika Gründling ◽  
Olaf Schneewind

ABSTRACT Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.


2016 ◽  
Vol 198 (11) ◽  
pp. 1585-1594 ◽  
Author(s):  
Jun Kasahara ◽  
Yuuka Kiriyama ◽  
Mari Miyashita ◽  
Takuma Kondo ◽  
Takeshi Yamada ◽  
...  

ABSTRACTInBacillus subtilis, thedl-endopeptidase LytE is responsible for lateral peptidoglycan hydrolysis during cell elongation. We found that σI-dependent transcription oflytEis considerably enhanced in a strain with a mutation inltaS, which encodes a major lipoteichoic acid (LTA) synthase. Similar enhancements were observed in mutants that affect the glycolipid anchor and wall teichoic acid (WTA) synthetic pathways. Immunofluorescence microscopy revealed that the LytE foci were considerably increased in these mutants. The localization patterns of LytE on the sidewalls appeared to be helix-like in LTA-defective or WTA-reduced cells and evenly distributed on WTA-depleted or -defective cell surfaces. These results strongly suggested that LTA and WTA affect both σI-dependent expression and localization of LytE. Interestingly, increased LytE localization along the sidewall in theltaSmutant largely occurred in an MreBH-independent manner. Moreover, we found that cell surface decorations with LTA and WTA are gradually reduced at increased culture temperatures and that LTA rather than WTA on the cell surface is reduced at high temperatures. In contrast, the amount of LytE on the cell surface gradually increased under heat stress conditions. Taken together, these results indicated that reductions in these anionic polymers at high temperatures might give rise to increases in SigI-dependent expression and cell surface localization of LytE at high temperatures.IMPORTANCEThe bacterial cell wall is required for maintaining cell shape and bearing environmental stresses. The Gram-positive cell wall consists of mesh-like peptidoglycan and covalently linked wall teichoic acid and lipoteichoic acid polymers. It is important to determine if these anionic polymers are required for proliferation and environmental adaptation. Here, we demonstrated that these polymers affect the expression and localization of a peptidoglycan hydrolase LytE required for lateral cell wall elongation. Moreover, we found that cell surface decorations with teichoic acid polymers are substantially decreased at high temperatures and that the peptidoglycan hydrolase is consequently increased. These findings suggest that teichoic acid polymers control lateral peptidoglycan hydrolysis by LytE, and bacteria drastically change their cell wall content to adapt to their environment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Noëlle Mistretta ◽  
Marina Brossaud ◽  
Fabienne Telles ◽  
Violette Sanchez ◽  
Philippe Talaga ◽  
...  

1969 ◽  
Vol 111 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D C Ellwood ◽  
D. W. Tempest

1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg2+-limitation to PO43−-limitation or K+-limitation to PO43−-limitation showed that teichuronic acid synthesis started immediately the culture became PO43−-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO43−-limited B. subtilis var. niger culture was returned to being Mg2+-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.


2020 ◽  
Vol 8 (6) ◽  
pp. 870
Author(s):  
Mike Gajdiss ◽  
Ian R. Monk ◽  
Ute Bertsche ◽  
Janina Kienemund ◽  
Tanja Funk ◽  
...  

Staphylococcus aureus is a facultative pathogen that can encode numerous antibiotic resistance and immune evasion genes and can cause severe infections. Reduced susceptibility to last resort antibiotics such as vancomycin and daptomycin is often associated with mutations in walRK, an essential two-component regulatory system (TCS). This study focuses on the WalK accessory membrane proteins YycH and YycI and their influence on WalRK phosphorylation. Depletion of YycH and YycI by antisense RNA caused an impaired autolysis, indicating a positive regulatory function on WalK as has been previously described. Phosphorylation assays with full-length recombinant proteins in phospholipid liposomes showed that YycH and YycI stimulate WalK activity and that both regulatory proteins are needed for full activation of the WalK kinase. This was validated in vivo through examining the phosphorylation status of WalR using Phos-tag SDS-PAGE with a yycHI deletion mutant exhibiting reduced levels of phosphorylated WalR. In the yycHI knockdown strain, muropeptide composition of the cell wall was not affected, however, the wall teichoic acid content was increased. In conclusion, a direct modulation of WalRK phosphorylation activity by the accessory proteins YycH and YycI is reported both in vitro and in vivo. Taken together, our results show that YycH and YycI are important in the direct regulation of WalRK-dependent cell wall metabolism.


Sign in / Sign up

Export Citation Format

Share Document