intimate link
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 39)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Woun Kang ◽  
Felix Spathelf ◽  
Benoît Fauqué ◽  
Yuki Fuseya ◽  
Kamran Behnia

AbstractThe interface between a solid and vacuum can become electronically distinct from the bulk. This feature, encountered in the case of quantum Hall effect, has a manifestation in insulators with topologically protected metallic surface states. Non-trivial Berry curvature of the Bloch waves or periodically driven perturbation are known to generate it. Here, by studying the angle-dependent magnetoresistance in prismatic bismuth crystals of different shapes, we detect a robust surface contribution to electric conductivity when the magnetic field is aligned parallel to a two-dimensional boundary between the three-dimensional crystal and vacuum. The effect is absent in antimony, which has an identical crystal symmetry, a similar Fermi surface structure and equally ballistic carriers, but an inverted band symmetry and a topological invariant of opposite sign. Our observation confirms that the boundary interrupting the cyclotron orbits remains metallic in bismuth, which is in agreement with what was predicted by Azbel decades ago. However, the absence of the effect in antimony indicates an intimate link between band symmetry and this boundary conductance.


Author(s):  
Edoardo Vanni

This contribution offers a perspective on the intimate link that is established between theory, practice and results in the field of contemporary Landscape Archeology. With particular reference to the Anglo-Saxon and Mediterranean academic tradition, the discourse aims to investigate the specific way in which the adoption of broad categories and methodological procedures is key to reading the real and ideal Landscape. This analysis highlights how the many different interpretations of the Landscape represent the reflection of the type of questions pertaining to the context of a specific cultural background. I will pay particular attention to the phenomenological approach that seems to cannibalize the debate. Ultimately, I argues for a vision of landscape as a place of asymmetrical relations between human and non-human that cannot be done justice from too strong a phenomenological or materialistic perspective. Even the neo-materialistic collapse of subject and object must be tempered by this idea of ‘asymmetry,’ in which a landscape beyond the human must be accounted for. It is in this framework that I must consider time and space not only as contextual coordinates but as articulations of one another, with time structuring to one and space giving form to the other. All of this is done ‘in/with/from the landscape’; the landscape is neither solely setting nor actor but can be thought of both as a language, a field in which all resides and of which all is composed, and the sign, the contextual manifestations of this field constantly invoking and at play with the whole, a whole that can never be disassociated from its concretization. A new heuristic tool for investigating landscapes will also be proposed. 


2021 ◽  
pp. S153-S159
Author(s):  
L MÁČOVÁ ◽  
M BIČÍKOVÁ ◽  
R HAMPL

Aged people are the most susceptible group to COVID-19 infection. Immunosenescence characterized by impairment of immune function with inflamm-aging contributes to pathophysiological alterations, among which endocrine and metabolic diseases are not exception. Diabetes, obesity along with impairment of disorders of thyroid functions are the most frequent ones, the common feature of which is failure of immune system including autoimmune processes. In the minireview we discussed how COVID-19 and aging impact innate and adaptive immunity, diabetes and selected neuroendocrine processes. Mentioned is also beneficial effect of vitamin D for attenuation of these diseases and related epigenetic issues. Particular attention is devoted to the role of ACE2 protein in the light of its intimate link with renin-angiotensin regulating system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Heather A. Cole ◽  
Stephanie N. Moore-Lotridge ◽  
Gregory D. Hawley ◽  
Richard Jacobson ◽  
Masato Yuasa ◽  
...  

Chronic diseases in growing children, such as autoimmune disorders, obesity, and cancer, are hallmarked by musculoskeletal growth disturbances and osteoporosis. Many of the skeletal changes in these children are thought to be secondary to chronic inflammation. Recent studies have likewise suggested that changes in coagulation and fibrinolysis may contribute to musculoskeletal growth disturbances. In prior work, we demonstrated that mice deficient in plasminogen, the principal protease of degrading and clearing fibrin matrices, suffer from inflammation-driven systemic osteoporosis and that elimination of fibrinogen resulted in normalization of IL-6 levels and complete rescue of the skeletal phenotype. Given the intimate link between coagulation, fibrinolysis, and inflammation, here we determined if persistent fibrin deposition, elevated IL-6, or both contribute to early skeletal aging and physeal disruption in chronic inflammatory conditions. Skeletal growth as well as bone quality, physeal development, and vascularity were analyzed in C57BL6/J mice with plasminogen deficiency with and without deficiencies of either fibrinogen or IL-6. Elimination of fibrinogen, but not IL-6, rescued the skeletal phenotype and growth disturbances in this model of chronic disease. Furthermore, the skeletal phenotypes directly correlated with both systemic and local vascular changes in the skeletal environment. In conclusion, these results suggest that fibrinolysis through plasmin is essential for skeletal growth and maintenance, and is multifactorial by limiting inflammation and preserving vasculature.


2021 ◽  
Vol 12 ◽  
Author(s):  
Georg Northoff ◽  
Andrea Scalabrini

What kind of neuroscience does psychoanalysis require? At his time, Freud in his “Project for a Scientific Psychology” searched for a model of the brain that could relate to incorporate the psyche’s topography and dynamic. Current neuropsychoanalysis builds on specific functions as investigated in Affective and Cognitive (and Social) Neuroscience including embodied approaches. The brain’s various functions are often converged with prediction as operationalized in predictive coding (PC) and free energy principle (FEP) which, recently, have been conceived as core for a “New Project for Scientific Psychology.” We propose to search for a yet more comprehensive and holistic neuroscience that focuses primarily on its topography and dynamic analogous to Freud’s model of the psyche. This leads us to what we describe as “Spatiotemporal Neuroscience” that focuses on the spatial topography and temporal dynamic of the brain’s neural activity including how they shape affective, cognitive, and social functions including PC and FEP (first part). That is illustrated by the temporally and spatially nested neural hierarchy of the self in the brain’s neural activity (second and third part). This sets the ground for developing our proposed “Project for a Spatiotemporal Neuroscience,” which complements and extends both Freud’s and Solms’ projects (fourth part) and also carries major practical implications as it lays the ground for a novel form of neuroscientifically informed psychotherapy, namely, “Spatiotemporal Psychotherapy.” In conclusion, “Spatiotemporal Neuroscience” provides an intimate link of brain and psyche by showing topography and dynamic as their shared features, that is, “common currency.”


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1005
Author(s):  
Shasha Shi ◽  
Mikhail Puzakov ◽  
Zhongxia Guan ◽  
Kuilin Xiang ◽  
Mohamed Diaby ◽  
...  

Here, a new superfamily of IS630-Tc1-mariner (ITm) DNA transposons, termed Sailor, is identified, that is characterized by a DD82E catalytic domain and is distinct from all previously known superfamilies of the ITm group. Phylogenetic analyses revealed that Sailor forms a monophyletic clade with a more intimate link to the clades of Tc1/mariner and DD34E/Gambol. Sailor was detected in both prokaryotes and eukaryotes and invaded a total of 256 species across six kingdoms. Sailor is present in nine species of bacteria, two species of plantae, four species of protozoa, 23 species of Chromista, 12 species of Fungi and 206 species of animals. Moreover, Sailor is extensively distributed in invertebrates (a total of 206 species from six phyla) but is absent in vertebrates. Sailor transposons are 1.38–6.98 kb in total length and encoded transposases of ~676 aa flanked by TIRs with lengths between 18, 1362 and 4 bp (TATA) target-site duplications. Furthermore, our analysis provided strong evidence of Sailor transmissions from prokaryotes to eukaryotes and internal transmissions in both. These data update the classification of the ITm group and will contribute to the understanding of the evolution of ITm transposons and that of their hosts.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2374
Author(s):  
Yamen Abu Ahmad ◽  
Avital Oknin-Vaisman ◽  
Eliya Bitman-Lotan ◽  
Amir Orian

A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of “degradation-resistant” cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.


2021 ◽  
pp. 074873042110342
Author(s):  
Daniel W. Hart ◽  
Barry van Jaarsveld ◽  
Kiara G. Lasch ◽  
Kerryn L. Grenfell ◽  
Maria K. Oosthuizen ◽  
...  

Mammals have evolved circadian rhythms in internal biological processes and behaviors, such as locomotor activity (LA), to synchronize to the environmental conditions they experience. Photic entrainment of LA has been well established; however, non-photic entrainment, such as ambient temperature ( Ta), has received much less attention. To address this dearth of knowledge, we exposed two subterranean endothermic-homeothermic African mole-rat species, the solitary Cape mole-rat ( Georychus capensis [GC]) and social Mahali mole-rat ( Cryptomys hottentotus mahali [CHM]), to varying Ta cycles in the absence of light. We showed that the LA rhythms of these two species entrain to Ta cycles and that the majority of LA occurred during the coolest 12-h period. LA confined to the coolest Ta periods may be the direct consequence of the poor heat dissipation abilities of African mole-rats brought about by physiological and ecological constraints. Recently, it has been hypothesized that Ta is only a strong zeitgeber for circadian rhythms in species whose thermoregulatory abilities are sensitive to changes in Ta (i.e., heterotherms and ectotherms), which previously has excluded endothermic-homeothermic mammals. However, this study demonstrates that Ta is a strong zeitgeber or entrainer for circadian rhythms of LA in subterranean endothermic-homeothermic mammals as a consequence of their sensitivity to changes in Ta brought about by their poor heat dissipation abilities. This study reinforces the intimate link between circadian rhythms and thermoregulation and conclusively, for the first time, provides evidence that Ta is a strong zeitgeber for endothermic-homeothermic mammals.


Author(s):  
Marcelo Ribeiro Tavares ◽  
Lilian Fessler Vaz ◽  
Madalena Cunha Matos

A city is made of multiple places. Notably, Rio de Janeiro's Copacabana is full of many features that contribute to its worldwide recognition. In this context, this paper aims to highlight the intimate link between the beach and volleyball. In order to do so, the methodology consists of bibliographical research. The historical and theoretical data collection allow the analysis of government programs related to enhancing the practice of sports and leisure. It is known that leisure activities (and their regulations) in Copacabana Beach Boardwalk have definitely changed over the last hundred years. Ultimately, this research concludes that volleyball at the beach is worth special attention since it is a piece in the puzzle of Rio de Janeiro’s landscape and a great urban social activity.


Sign in / Sign up

Export Citation Format

Share Document