scholarly journals The effect of dream report collection and dream incorporation on memory consolidation during sleep

2018 ◽  
Author(s):  
Sarah F. Schoch ◽  
Maren J. Cordi ◽  
Michael Schredl ◽  
Bjöern Rasch

AbstractWaking up during the night to collect dream reports is a commonly used method to study dreams. This method has also been applied in studies on the relationship between dreams and memory consolidation. However, it is unclear if these awakenings influence ongoing memory consolidation processes. Furthermore, only few studies have examined if task incorporation into dreams is related to enhanced performance in the task. Here we compare memory performance in a word-picture association learning task after a night with (up to six awakenings) and without awakenings in 22 young and healthy participants. We then examine if the task is successfully incorporated into the dreams and if this incorporation is related to the task performance the next morning. We show that while the awakenings impair both subjective and objective sleep quality, these awakenings did not impair ongoing memory consolidation during sleep. When dreams were collected during the night by awakenings, memories of the learning task were successfully incorporated into dreams. No incorporation occurred in dreams collected only in the morning. Task incorporation into NREM sleep dreams, but not REM sleep dreams showed a relationship with task performance the next morning.We conclude that the method of awakenings to collect dream reports is suitable for dream and memory studies, and is even crucial to uncover task incorporations. Furthermore, our study suggests that dreams in NREM rather than REM sleep might be related to processes of memory consolidation during sleep.


Author(s):  
Michelle A. Frazer ◽  
Yesenia Cabrera ◽  
Rockelle S. Guthrie ◽  
Gina R. Poe

Abstract Purpose of review This paper reviews all optogenetic studies that directly test various sleep states, traits, and circuit-level activity profiles for the consolidation of different learning tasks. Recent findings Inhibiting or exciting neurons involved either in the production of sleep states or in the encoding and consolidation of memories reveals sleep states and traits that are essential for memory. REM sleep, NREM sleep, and the N2 transition to REM (characterized by sleep spindles) are integral to memory consolidation. Neural activity during sharp-wave ripples, slow oscillations, theta waves, and spindles are the mediators of this process. Summary These studies lend strong support to the hypothesis that sleep is essential to the consolidation of memories from the hippocampus and the consolidation of motor learning which does not necessarily involve the hippocampus. Future research can further probe the types of memory dependent on sleep-related traits and on the neurotransmitters and neuromodulators required.



SLEEP ◽  
2021 ◽  
Author(s):  
Yi-Ge Huang ◽  
Sarah J Flaherty ◽  
Carina A Pothecary ◽  
Russell G Foster ◽  
Stuart N Peirson ◽  
...  

Abstract Study objectives Torpor is a regulated and reversible state of metabolic suppression used by many mammalian species to conserve energy. Whereas the relationship between torpor and sleep has been well-studied in seasonal hibernators, less is known about the effects of fasting-induced torpor on states of vigilance and brain activity in laboratory mice. Methods Continuous monitoring of electroencephalogram (EEG), electromyogram (EMG) and surface body temperature was undertaken in adult, male C57BL/6 mice over consecutive days of scheduled restricted feeding. Results All animals showed bouts of hypothermia that became progressively deeper and longer as fasting progressed. EEG and EMG were markedly affected by hypothermia, although the typical electrophysiological signatures of NREM sleep, REM sleep and wakefulness enabled us to perform vigilance-state classification in all cases. Consistent with previous studies, hypothermic bouts were initiated from a state indistinguishable from NREM sleep, with EEG power decreasing gradually in parallel with decreasing surface body temperature. During deep hypothermia, REM sleep was largely abolished, and we observed shivering-associated intense bursts of muscle activity. Conclusions Our study highlights important similarities between EEG signatures of fasting-induced torpor in mice, daily torpor in Djungarian hamsters and hibernation in seasonally-hibernating species. Future studies are necessary to clarify the effects on fasting-induced torpor on subsequent sleep.



2013 ◽  
Vol 25 (10) ◽  
pp. 1597-1610 ◽  
Author(s):  
Erik J. Kaestner ◽  
John T. Wixted ◽  
Sara C. Mednick

Sleep affects declarative memory for emotional stimuli differently than it affects declarative memory for nonemotional stimuli. However, the interaction between specific sleep characteristics and emotional memory is not well understood. Recent studies on how sleep affects emotional memory have focused on rapid eye movement sleep (REM) but have not addressed non-REM sleep, particularly sleep spindles. This is despite the fact that sleep spindles are implicated in declarative memory as well as neural models of memory consolidation (e.g., hippocampal neural replay). Additionally, many studies examine a limited range of emotional stimuli and fail to disentangle differences in memory performance because of variance in valence and arousal. Here, we experimentally increase non-REM sleep features, sleep spindle density, and SWS, with pharmacological interventions using zolpidem (Ambien) and sodium oxybate (Xyrem) during daytime naps. We use a full spread of emotional stimuli to test all levels of valence and arousal. We find that increasing sleep spindle density increases memory discrimination (da) for highly arousing and negative stimuli without altering measures of bias (ca). These results indicate a broader role for sleep in the processing of emotional stimuli with differing effects based on arousal and valence, and they raise the possibility that sleep spindles causally facilitate emotional memory consolidation. These findings are discussed in terms of the known use of hypnotics in individuals with emotional mood disorders.



2010 ◽  
Vol 104 (5) ◽  
pp. 2603-2614 ◽  
Author(s):  
Michael A. Nitsche ◽  
Michaela Jakoubkova ◽  
Nivethida Thirugnanasambandam ◽  
Leonie Schmalfuss ◽  
Sandra Hullemann ◽  
...  

Motor learning and memory consolidation require the contribution of different cortices. For motor sequence learning, the primary motor cortex is involved primarily in its acquisition. Premotor areas might be important for consolidation. In accordance, modulation of cortical excitability via transcranial DC stimulation (tDCS) during learning affects performance when applied to the primary motor cortex, but not premotor cortex. We aimed to explore whether premotor tDCS influences task performance during motor memory consolidation. The impact of excitability-enhancing, -diminishing, or placebo premotor tDCS during rapid eye movement (REM) sleep on recall in the serial reaction time task (SRTT) was explored in healthy humans. The motor task was learned in the evening. Recall was performed immediately after tDCS or the following morning. In two separate control experiments, excitability-enhancing premotor tDCS was performed 4 h after task learning during daytime or immediately before conduction of a simple reaction time task. Excitability-enhancing tDCS performed during REM sleep increased recall of the learned movement sequences, when tested immediately after stimulation. REM density was enhanced by excitability-increasing tDCS and reduced by inhibitory tDCS, but did not correlate with task performance. In the control experiments, tDCS did not improve performance. We conclude that the premotor cortex is involved in motor memory consolidation during REM sleep.



2016 ◽  
Vol 113 (26) ◽  
pp. 7272-7277 ◽  
Author(s):  
Lauren N. Whitehurst ◽  
Nicola Cellini ◽  
Elizabeth A. McDevitt ◽  
Katherine A. Duggan ◽  
Sara C. Mednick

Throughout history, psychologists and philosophers have proposed that good sleep benefits memory, yet current studies focusing on the relationship between traditionally reported sleep features (e.g., minutes in sleep stages) and changes in memory performance show contradictory findings. This discrepancy suggests that there are events occurring during sleep that have not yet been considered. The autonomic nervous system (ANS) shows strong variation across sleep stages. Also, increases in ANS activity during waking, as measured by heart rate variability (HRV), have been correlated with memory improvement. However, the role of ANS in sleep-dependent memory consolidation has never been examined. Here, we examined whether changes in cardiac ANS activity (HRV) during a daytime nap were related to performance on two memory conditions (Primed and Repeated) and a nonmemory control condition on the Remote Associates Test. In line with prior studies, we found sleep-dependent improvement in the Primed condition compared with the Quiet Wake control condition. Using regression analyses, we compared the proportion of variance in performance associated with traditionally reported sleep features (model 1) vs. sleep features and HRV during sleep (model 2). For both the Primed and Repeated conditions, model 2 (sleep + HRV) predicted performance significantly better (73% and 58% of variance explained, respectively) compared with model 1 (sleep only, 46% and 26% of variance explained, respectively). These findings present the first evidence, to our knowledge, that ANS activity may be one potential mechanism driving sleep-dependent plasticity.



2002 ◽  
Vol 93 (1) ◽  
pp. 141-146 ◽  
Author(s):  
O. Le Bon ◽  
L. Staner ◽  
S. K. Rivelli ◽  
G. Hoffmann ◽  
I. Pelc ◽  
...  

Polysomnograms of most homeothermic species distinguish two states, rapid eye movement (REM) and non-REM (NREM) sleep. These alternate several times during the night for reasons and following rules that remain poorly understood. It is unknown whether each state has its own function and regulation or whether they represent two facets of the same process. The present study compared the mean REM/NREM sleep ratio and the mean number of NREM-REM sleep cycles across 3 consecutive nights. The rationale was that, if REM and NREM sleep are tightly associated, their ratio should be comparable whatever the cycle frequency in the night. Twenty-six healthy subjects of both sexes were recorded at their home for 4 consecutive nights. The correlation between the REM/NREM sleep ratio and the number of cycles was highly significant. Of the two sleep components, REM sleep was associated to the number of cycles, whereas NREM sleep was not. This suggests that the relationship between REM sleep and NREM sleep is rather weak within cycles, does not support the concept of NREM-REM sleep cycles as miniature units of the sleep process, and favors the concept of distinct mechanisms of regulation for the two components.



SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A34-A34
Author(s):  
E M Wernette ◽  
K M Fenn

Abstract Introduction Slow wave sleep (SWS) strengthens declarative memory for information studied for a later test. However, research on the effect of sleep on information that is not intentionally remembered is scare. Previous research from our lab suggests sleep consolidates some, but not all, information that has been encoded incidentally, meaning that it has been acted on but not intentionally remembered. It remains unclear what determines which information benefits from sleep-dependent consolidation processes and what aspects of sleep are related to these mnemonic benefits. In two experiments, we test the hypothesis that sleep consolidates strong but not weak memory traces following incidental encoding, and assess the relationship between memory performance and objective sleep characteristics. Methods In Experiment 1, participants rated words one (weak traces) or three times (strong traces) in a deep or shallow incidental encoding task. Participants either rated words on a scale from ‘concrete’ to ‘abstract’ (deep) or counted the vowels in the words (shallow). Following a 12-hour period containing sleep or wakefulness, participants took a surprise memory test. In Experiment 2, participants rated words one or three times in the deep encoding task, received an 8-hour sleep opportunity with polysomnography, and took the surprise memory test. Results In Experiment 1, participants remembered words better after sleep than wake regardless of whether words were encoded one or three times, but only after deep encoding. Sleep did not consolidate information following shallow encoding. Experiment 2 is ongoing, but we predict that the amount of SWS will correlate positively with memory. Conclusion Results thus far suggest sleep may have consolidated information based on the strength of memory traces. Because deep encoding results in stronger memory traces than shallow encoding, this work is broadly consistent with theories of memory consolidation that predict sleep is more beneficial for strong memory traces than weak, such as the synaptic downscaling hypothesis. Support N/A



SLEEP ◽  
2019 ◽  
Vol 42 (10) ◽  
Author(s):  
Jeffrey S Burgdorf ◽  
Martha H Vitaterna ◽  
Christopher J Olker ◽  
Eun Joo Song ◽  
Edward P Christian ◽  
...  

Abstract Study Objectives The present studies examine the effects of NMDAR activation by NYX-2925 diurnal rhythmicity of both sleep and wake as well as emotion. Methods Twenty-four-hour sleep EEG recordings were obtained in sleep-deprived and non-sleep-deprived rats. In addition, the day–night cycle of both activity and mood was measured using home cage ultrasonic-vocalization recordings. Results NYX-2925 significantly facilitated non-REM (NREM) sleep during the lights-on (sleep) period, and this effect persisted for 3 days following a single dose in sleep-deprived rats. Sleep-bout duration and REM latencies were increased without affecting total REM sleep, suggesting better sleep quality. In addition, delta power during wake was decreased, suggesting less drowsiness. NYX-2925 also rescued learning and memory deficits induced by sleep deprivation, measured using an NMDAR-dependent learning task. Additionally, NYX-2925 increased positive affect and decreased negative affect, primarily by facilitating the transitions from sleep to rough-and-tumble play and back to sleep. In contrast to NYX-2925, the NMDAR antagonist ketamine acutely (1–4 hours post-dosing) suppressed REM and non-REM sleep, increased delta power during wake, and blunted the amplitude of the sleep-wake activity rhythm. Discussion These data suggest that NYX-2925 could enhance behavioral plasticity via improved sleep quality as well as vigilance during wake. As such, the facilitation of sleep by NYX-2925 has the potential to both reduce symptom burden on neurological and psychiatric disorders as well as serve as a biomarker for drug effects through restoration of sleep architecture.



2017 ◽  
Author(s):  
Mohsen Naji ◽  
Giri P. Krishnan ◽  
Elizabeth A McDevitt ◽  
Maxim Bazhenov ◽  
Sara C. Mednick

AbstractWhile anatomical pathways between forebrain cognitive and brainstem autonomic nervous centers are well defined, autonomic–central interactions during sleep and their contribution to waking performance are not understood. Here, we analyzed simultaneous central activity via electroencephalography (EEG) and autonomic heart beat-to-beat intervals (RR intervals) from electrocardiography (ECG) during wake and daytime sleep. We identified bursts of ECG activity that lasted 4-5 seconds and predominated in non-rapid-eye-movement sleep (NREM). Using event-based analysis of NREM sleep, we found an increase in delta (0.5-4Hz) and sigma (12-15Hz) power and an elevated density of slow oscillations (0.5-1Hz) about 5 secs prior to peak of the heart rate burst, as well as a surge in vagal activity, assessed by high-frequency (HF) component of RR intervals. Using regression framework, we show that these Autonomic/Central Events (ACE) positively predicted post-nap improvement in a declarative memory task after controlling for the effects of spindles and slow oscillations from sleep periods without ACE. No such relation was found between memory performance and a control nap. Additionally, NREM ACE negatively correlated with REM sleep and learning in a non-declarative memory task. These results provide the first evidence that coordinated autonomic and central events play a significant role in declarative memory consolidation.



2017 ◽  
Author(s):  
Elizaveta Solomonova ◽  
Simon Dubé ◽  
Cloé Blanchette-Carrière ◽  
Arnaud Samson-Richer ◽  
Michelle Carr ◽  
...  

Study objectives: Rapid eye movement (REM) sleep, non-rapid eye movement (NREM) sleep, and sleep spindles are all implicated in the consolidation of procedural memories. The relative contributions of sleep stages and sleep spindles was previously shown to depend on individual differences in task processing. Experience with Vipassana meditation is one such individual difference that has not been investigated in relation to sleep. Vipassana meditation is a form of mental training that enhances proprioceptive and somatic awareness and alters attentional style. The goal was thus to examine a potential moderating role for Vipassana meditation experience on sleep-dependent procedural memory consolidation.Methods: Groups of Vipassana meditation practitioners (N=20) and matched meditation-naïve controls (N=20) slept for a single daytime nap in the laboratory. Before and after the nap they completed a procedural task on the Wii Fit balance platform.Results: Meditators performed slightly better on the task before the nap, but the two groups improved similarly after sleep. The groups showed different patterns of sleep-dependent procedural memory consolidation: in meditators task learning was negatively correlated with density of fast and positively correlated with density of slow occipital spindles, while in controls task improvement was associated with increases in REM sleep. Meditation practitioners had a lower density of sleep spindles, especially in occipital regions.Conclusions: Results suggest that neuroplastic changes associated with sustained meditation practice may alter overall sleep architecture and reorganize sleep-dependent patterns of memory consolidation. The lower density of spindles in meditators may mean that meditation practice compensates for some of the memory functions of sleep.



Sign in / Sign up

Export Citation Format

Share Document