scholarly journals Homology-based loop modelling yields more complete crystallographic protein structures

2018 ◽  
Author(s):  
Bart van Beusekom ◽  
Krista Joosten ◽  
Maarten L. Hekkelman ◽  
Robbie P. Joosten ◽  
Anastassis Perrakis

AbstractInherent protein flexibility, poor or low-resolution diffraction data, or poor electron density maps, often inhibit building complete structural models during X-ray structure determination. However, advances in crystallographic refinement and model building nowadays often allow to complete previously missing parts. Here, we present algorithms that identify regions missing in a certain model but present in homologous structures in the Protein Data Bank (PDB), and “graft” these regions of interest. These new regions are refined and validated in a fully automated procedure. Including these developments in our PDB-REDO pipeline, allowed to build 24,962 missing loops in the PDB. The models and the automated procedures are publically available through the PDB-REDO databank and web server (https://pdb-redo.eu). More complete protein structure models enable a higher quality public archive, but also a better understanding of protein function, better comparison between homologous structures, and more complete data mining in structural bioinformatics projects.SynopsisThousands of missing regions in existing protein structure models are completed using new methods based on homology.

IUCrJ ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 585-594 ◽  
Author(s):  
Bart van Beusekom ◽  
Krista Joosten ◽  
Maarten L. Hekkelman ◽  
Robbie P. Joosten ◽  
Anastassis Perrakis

Inherent protein flexibility, poor or low-resolution diffraction data or poorly defined electron-density maps often inhibit the building of complete structural models during X-ray structure determination. However, recent advances in crystallographic refinement and model building often allow completion of previously missing parts. This paper presents algorithms that identify regions missing in a certain model but present in homologous structures in the Protein Data Bank (PDB), and `graft' these regions of interest. These new regions are refined and validated in a fully automated procedure. Including these developments in the PDB-REDO pipeline has enabled the building of 24 962 missing loops in the PDB. The models and the automated procedures are publicly available through the PDB-REDO databank and webserver. More complete protein structure models enable a higher quality public archive but also a better understanding of protein function, better comparison between homologous structures and more complete data mining in structural bioinformatics projects.


2019 ◽  
Author(s):  
Sen Yao ◽  
Hunter N.B. Moseley

AbstractHigh-quality three-dimensional structural data is of great value for the functional interpretation of biomacromolecules, especially proteins; however, structural quality varies greatly across the entries in the worldwide Protein Data Bank (wwPDB). Since 2008, the wwPDB has required the inclusion of structure factors with the deposition of x-ray crystallographic structures to support the independent evaluation of structures with respect to the underlying experimental data used to derive those structures. However, interpreting the discrepancies between the structural model and its underlying electron density data is difficult, since derived electron density maps use arbitrary electron density units which are inconsistent between maps from different wwPDB entries. Therefore, we have developed a method that converts electron density values into units of electrons. With this conversion, we have developed new methods that can evaluate specific regions of an x-ray crystallographic structure with respect to a physicochemical interpretation of its corresponding electron density map. We have systematically compared all deposited x-ray crystallographic protein models in the wwPDB with their underlying electron density maps, if available, and characterized the electron density in terms of expected numbers of electrons based on the structural model. The methods generated coherent evaluation metrics throughout all PDB entries with associated electron density data, which are consistent with visualization software that would normally be used for manual quality assessment. To our knowledge, this is the first attempt to derive units of electrons directly from electron density maps without the aid of the underlying structure factors. These new metrics are biochemically-informative and can be extremely useful for filtering out low-quality structural regions from inclusion into systematic analyses that span large numbers of PDB entries. Furthermore, these new metrics will improve the ability of non-crystallographers to evaluate regions of interest within PDB entries, since only the PDB structure and the associated electron density maps are needed. These new methods are available as a well-documented Python package on GitHub and the Python Package Index under a modified Clear BSD open source license.Author summaryElectron density maps are very useful for validating the x-ray structure models in the Protein Data Bank (PDB). However, it is often daunting for non-crystallographers to use electron density maps, as it requires a lot of prior knowledge. This study provides methods that can infer chemical information solely from the electron density maps available from the PDB to interpret the electron density and electron density discrepancy values in terms of units of electrons. It also provides methods to evaluate regions of interest in terms of the number of missing or excessing electrons, so that a broader audience, such as biologists or bioinformaticians, can also make better use of the electron density information available in the PDB, especially for quality control purposes.Software and full results available athttps://github.com/MoseleyBioinformaticsLab/pdb_eda (software on GitHub)https://pypi.org/project/pdb-eda/ (software on PyPI)https://pdb-eda.readthedocs.io/en/latest/ (documentation on ReadTheDocs)https://doi.org/10.6084/m9.figshare.7994294 (code and results on FigShare)


2019 ◽  
Vol 5 (8) ◽  
pp. eaax4621 ◽  
Author(s):  
Hongyi Xu ◽  
Hugo Lebrette ◽  
Max T. B. Clabbers ◽  
Jingjing Zhao ◽  
Julia J. Griese ◽  
...  

Microcrystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables the study of biomolecules from micrometer-sized 3D crystals that are too small to be studied by conventional x-ray crystallography. However, to date, MicroED has only been applied to redetermine protein structures that had already been solved previously by x-ray diffraction. Here, we present the first new protein structure—an R2lox enzyme—solved using MicroED. The structure was phased by molecular replacement using a search model of 35% sequence identity. The resulting electrostatic scattering potential map at 3.0-Å resolution was of sufficient quality to allow accurate model building and refinement. The dinuclear metal cofactor could be located in the map and was modeled as a heterodinuclear Mn/Fe center based on previous studies. Our results demonstrate that MicroED has the potential to become a widely applicable tool for revealing novel insights into protein structure and function.


2019 ◽  
Author(s):  
H. Xu ◽  
H. Lebrette ◽  
M.T.B. Clabbers ◽  
J. Zhao ◽  
J.J. Griese ◽  
...  

AbstractMicro-crystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables studying biomolecules from micron-sized 3D crystals that are too small to be studied by conventional X-ray crystallography. However, to the best of our knowledge, MicroED has only been applied to re-determine protein structures that had already been solved previously by X-ray diffraction. Here we present the first unknown protein structure – an R2lox enzyme – solved using MicroED. The structure was phased by molecular replacement using a search model of 35% sequence identity. The resulting electrostatic scattering potential map at 3.0 Å resolution was of sufficient quality to allow accurate model building and refinement. Our results demonstrate that MicroED has the potential to become a widely applicable tool for revealing novel insights into protein structure and function, opening up new opportunities for structural biologists.


2019 ◽  
Vol 75 (2) ◽  
pp. 123-137 ◽  
Author(s):  
Daniel A. Keedy

Proteins inherently fluctuate between conformations to perform functions in the cell. For example, they sample product-binding, transition-state-stabilizing and product-release states during catalysis, and they integrate signals from remote regions of the structure for allosteric regulation. However, there is a lack of understanding of how these dynamic processes occur at the basic atomic level. This gap can be at least partially addressed by combining variable-temperature (instead of traditional cryogenic temperature) X-ray crystallography with algorithms for modeling alternative conformations based on electron-density maps, in an approach called multitemperature multiconformer X-ray crystallography (MMX). Here, the use of MMX to reveal alternative conformations at different sites in a protein structure and to estimate the degree of energetic coupling between them is discussed. These insights can suggest testable hypotheses about allosteric mechanisms. Temperature is an easily manipulated experimental parameter, so the MMX approach is widely applicable to any protein that yields well diffracting crystals. Moreover, the general principles of MMX are extensible to other perturbations such as pH, pressure, ligand concentration etc. Future work will explore strategies for leveraging X-ray data across such perturbation series to more quantitatively measure how different parts of a protein structure are coupled to each other, and the consequences thereof for allostery and other aspects of protein function.


2014 ◽  
Vol 70 (7) ◽  
pp. 1994-2006 ◽  
Author(s):  
Rocco Caliandro ◽  
Benedetta Carrozzini ◽  
Giovanni Luca Cascarano ◽  
Giuliana Comunale ◽  
Carmelo Giacovazzo ◽  
...  

Phasing proteins at non-atomic resolution is still a challenge for anyab initiomethod. A variety of algorithms [Patterson deconvolution, superposition techniques, a cross-correlation function (Cmap), theVLD(vive la difference) approach, the FF function, a nonlinear iterative peak-clipping algorithm (SNIP) for defining the background of a map and thefree lunchextrapolation method] have been combined to overcome the lack of experimental information at non-atomic resolution. The method has been applied to a large number of protein diffraction data sets with resolutions varying from atomic to 2.1 Å, with the condition that S or heavier atoms are present in the protein structure. The applications include the use ofARP/wARPto check the quality of the final electron-density maps in an objective way. The results show that resolution is still the maximum obstacle to protein phasing, but also suggest that the solution of protein structures at 2.1 Å resolution is a feasible, even if still an exceptional, task for the combined set of algorithms implemented in the phasing program. The approach described here is more efficient than the previously described procedures:e.g.the combined use of the algorithms mentioned above is frequently able to provide phases of sufficiently high quality to allow automatic model building. The method is implemented in the current version ofSIR2014.


2000 ◽  
Vol 33 (1) ◽  
pp. 176-183 ◽  
Author(s):  
Guoguang Lu

In order to facilitate the three-dimensional structure comparison of proteins, software for making comparisons and searching for similarities to protein structures in databases has been developed. The program identifies the residues that share similar positions of both main-chain and side-chain atoms between two proteins. The unique functions of the software also include database processingviaInternet- and Web-based servers for different types of users. The developed method and its friendly user interface copes with many of the problems that frequently occur in protein structure comparisons, such as detecting structurally equivalent residues, misalignment caused by coincident match of Cαatoms, circular sequence permutations, tedious repetition of access, maintenance of the most recent database, and inconvenience of user interface. The program is also designed to cooperate with other tools in structural bioinformatics, such as the 3DB Browser software [Prilusky (1998).Protein Data Bank Q. Newslett.84, 3–4] and the SCOP database [Murzin, Brenner, Hubbard & Chothia (1995).J. Mol. Biol.247, 536–540], for convenient molecular modelling and protein structure analysis. A similarity ranking score of `structure diversity' is proposed in order to estimate the evolutionary distance between proteins based on the comparisons of their three-dimensional structures. The function of the program has been utilized as a part of an automated program for multiple protein structure alignment. In this paper, the algorithm of the program and results of systematic tests are presented and discussed.


2014 ◽  
Vol 70 (9) ◽  
pp. 2344-2355 ◽  
Author(s):  
Ryan McGreevy ◽  
Abhishek Singharoy ◽  
Qufei Li ◽  
Jingfen Zhang ◽  
Dong Xu ◽  
...  

X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally,viasystematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S13-S13
Author(s):  
Valery Novoseletsky ◽  
Mikhail Lozhnikov ◽  
Grigoriy Armeev ◽  
Aleksandr Kudriavtsev ◽  
Alexey Shaytan ◽  
...  

Background: Protein structure determination using X-ray free-electron laser (XFEL) includes analysis and merging a large number of snapshot diffraction patterns. Convolutional neural networks are widely used to solve numerous computer vision problems, e.g. image classification, and can be used for diffraction pattern analysis. But the task of protein structure determination with the use of CNNs only is not yet solved. Methods: We simulated the diffraction patterns using the Condor software library and obtained more than 1000 diffraction patterns for each structure with simulation parameters resembling real ones. To classify diffraction patterns, we tried two approaches, which are widely known in the area of image classification: a classic VGG network and residual networks. Results: 1. Recognition of a protein class (GPCRs vs globins). Globins and GPCR-like proteins are typical α-helical proteins. Each of these protein families has a large number of representatives (including those with known structure) but we used only 8 structures from every family. 12,000 of diffraction patterns were used for training and 4,000 patterns for testing. Results indicate that all considered networks are able to recognize the protein family type with high accuracy. 2. Recognition of the number of protein molecules in the liposome. We considered the usage of lyposomes as carriers of membrane or globular proteins for sample delivery in XFEL experiments in order to improve the X-ray beam hit rate. Three sets of diffractograms for liposomes of various radius were calculated, including diffractograms for empty liposomes, liposomes loaded with 5 bacteriorhodopsin molecules, and liposomes loaded with 10 bacteriorhodopsin molecules. The training set consisted of 23625 diffraction patterns, and test set of 7875 patterns. We found that all networks used in our study were able to identify the number of protein molecules in liposomes independent of the liposome radius. Our findings make this approach rather promising for the usage of liposomes as protein carriers in XFEL experiments. Conclusion: Thus, the performed numerical experiments show that the use of neural network algorithms for the recognition of diffraction images from single macromolecular particles makes it possible to determine changes in the structure at the angstrom scale.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1752-C1752
Author(s):  
Rino Saiga ◽  
Susumu Takekoshi ◽  
Naoya Nakamura ◽  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
...  

In macromolecular crystallography, an electron density distribution is traced to build a model of the target molecule. We applied this method to model building for electron density maps of a brain network. Human cerebral tissue was stained with heavy atoms [1]. The sample was then analyzed at the BL20XU beamline of SPring-8 to obtain a three-dimensional map of X-ray attenuation coefficients representing the electron density distribution. Skeletonized wire models were built by placing and connecting nodes in the map [2], as shown in the figure below. The model-building procedures were similar to those reported for crystallographic analyses of macromolecular structures, while the neuronal network was automatically traced by using a Sobel filter. Neuronal circuits were then analytically resolved from the skeletonized models. We suggest that X-ray microtomography along with model building in the electron density map has potential as a method for understanding three-dimensional microstructures relevant to biological functions.


Sign in / Sign up

Export Citation Format

Share Document