scholarly journals Homology-based loop modeling yields more complete crystallographic protein structures

IUCrJ ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 585-594 ◽  
Author(s):  
Bart van Beusekom ◽  
Krista Joosten ◽  
Maarten L. Hekkelman ◽  
Robbie P. Joosten ◽  
Anastassis Perrakis

Inherent protein flexibility, poor or low-resolution diffraction data or poorly defined electron-density maps often inhibit the building of complete structural models during X-ray structure determination. However, recent advances in crystallographic refinement and model building often allow completion of previously missing parts. This paper presents algorithms that identify regions missing in a certain model but present in homologous structures in the Protein Data Bank (PDB), and `graft' these regions of interest. These new regions are refined and validated in a fully automated procedure. Including these developments in the PDB-REDO pipeline has enabled the building of 24 962 missing loops in the PDB. The models and the automated procedures are publicly available through the PDB-REDO databank and webserver. More complete protein structure models enable a higher quality public archive but also a better understanding of protein function, better comparison between homologous structures and more complete data mining in structural bioinformatics projects.

2018 ◽  
Author(s):  
Bart van Beusekom ◽  
Krista Joosten ◽  
Maarten L. Hekkelman ◽  
Robbie P. Joosten ◽  
Anastassis Perrakis

AbstractInherent protein flexibility, poor or low-resolution diffraction data, or poor electron density maps, often inhibit building complete structural models during X-ray structure determination. However, advances in crystallographic refinement and model building nowadays often allow to complete previously missing parts. Here, we present algorithms that identify regions missing in a certain model but present in homologous structures in the Protein Data Bank (PDB), and “graft” these regions of interest. These new regions are refined and validated in a fully automated procedure. Including these developments in our PDB-REDO pipeline, allowed to build 24,962 missing loops in the PDB. The models and the automated procedures are publically available through the PDB-REDO databank and web server (https://pdb-redo.eu). More complete protein structure models enable a higher quality public archive, but also a better understanding of protein function, better comparison between homologous structures, and more complete data mining in structural bioinformatics projects.SynopsisThousands of missing regions in existing protein structure models are completed using new methods based on homology.


2014 ◽  
Vol 70 (7) ◽  
pp. 1994-2006 ◽  
Author(s):  
Rocco Caliandro ◽  
Benedetta Carrozzini ◽  
Giovanni Luca Cascarano ◽  
Giuliana Comunale ◽  
Carmelo Giacovazzo ◽  
...  

Phasing proteins at non-atomic resolution is still a challenge for anyab initiomethod. A variety of algorithms [Patterson deconvolution, superposition techniques, a cross-correlation function (Cmap), theVLD(vive la difference) approach, the FF function, a nonlinear iterative peak-clipping algorithm (SNIP) for defining the background of a map and thefree lunchextrapolation method] have been combined to overcome the lack of experimental information at non-atomic resolution. The method has been applied to a large number of protein diffraction data sets with resolutions varying from atomic to 2.1 Å, with the condition that S or heavier atoms are present in the protein structure. The applications include the use ofARP/wARPto check the quality of the final electron-density maps in an objective way. The results show that resolution is still the maximum obstacle to protein phasing, but also suggest that the solution of protein structures at 2.1 Å resolution is a feasible, even if still an exceptional, task for the combined set of algorithms implemented in the phasing program. The approach described here is more efficient than the previously described procedures:e.g.the combined use of the algorithms mentioned above is frequently able to provide phases of sufficiently high quality to allow automatic model building. The method is implemented in the current version ofSIR2014.


2014 ◽  
Vol 70 (9) ◽  
pp. 2344-2355 ◽  
Author(s):  
Ryan McGreevy ◽  
Abhishek Singharoy ◽  
Qufei Li ◽  
Jingfen Zhang ◽  
Dong Xu ◽  
...  

X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally,viasystematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.


2019 ◽  
Author(s):  
Sen Yao ◽  
Hunter N.B. Moseley

AbstractHigh-quality three-dimensional structural data is of great value for the functional interpretation of biomacromolecules, especially proteins; however, structural quality varies greatly across the entries in the worldwide Protein Data Bank (wwPDB). Since 2008, the wwPDB has required the inclusion of structure factors with the deposition of x-ray crystallographic structures to support the independent evaluation of structures with respect to the underlying experimental data used to derive those structures. However, interpreting the discrepancies between the structural model and its underlying electron density data is difficult, since derived electron density maps use arbitrary electron density units which are inconsistent between maps from different wwPDB entries. Therefore, we have developed a method that converts electron density values into units of electrons. With this conversion, we have developed new methods that can evaluate specific regions of an x-ray crystallographic structure with respect to a physicochemical interpretation of its corresponding electron density map. We have systematically compared all deposited x-ray crystallographic protein models in the wwPDB with their underlying electron density maps, if available, and characterized the electron density in terms of expected numbers of electrons based on the structural model. The methods generated coherent evaluation metrics throughout all PDB entries with associated electron density data, which are consistent with visualization software that would normally be used for manual quality assessment. To our knowledge, this is the first attempt to derive units of electrons directly from electron density maps without the aid of the underlying structure factors. These new metrics are biochemically-informative and can be extremely useful for filtering out low-quality structural regions from inclusion into systematic analyses that span large numbers of PDB entries. Furthermore, these new metrics will improve the ability of non-crystallographers to evaluate regions of interest within PDB entries, since only the PDB structure and the associated electron density maps are needed. These new methods are available as a well-documented Python package on GitHub and the Python Package Index under a modified Clear BSD open source license.Author summaryElectron density maps are very useful for validating the x-ray structure models in the Protein Data Bank (PDB). However, it is often daunting for non-crystallographers to use electron density maps, as it requires a lot of prior knowledge. This study provides methods that can infer chemical information solely from the electron density maps available from the PDB to interpret the electron density and electron density discrepancy values in terms of units of electrons. It also provides methods to evaluate regions of interest in terms of the number of missing or excessing electrons, so that a broader audience, such as biologists or bioinformaticians, can also make better use of the electron density information available in the PDB, especially for quality control purposes.Software and full results available athttps://github.com/MoseleyBioinformaticsLab/pdb_eda (software on GitHub)https://pypi.org/project/pdb-eda/ (software on PyPI)https://pdb-eda.readthedocs.io/en/latest/ (documentation on ReadTheDocs)https://doi.org/10.6084/m9.figshare.7994294 (code and results on FigShare)


2014 ◽  
Vol 70 (a1) ◽  
pp. C1752-C1752
Author(s):  
Rino Saiga ◽  
Susumu Takekoshi ◽  
Naoya Nakamura ◽  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
...  

In macromolecular crystallography, an electron density distribution is traced to build a model of the target molecule. We applied this method to model building for electron density maps of a brain network. Human cerebral tissue was stained with heavy atoms [1]. The sample was then analyzed at the BL20XU beamline of SPring-8 to obtain a three-dimensional map of X-ray attenuation coefficients representing the electron density distribution. Skeletonized wire models were built by placing and connecting nodes in the map [2], as shown in the figure below. The model-building procedures were similar to those reported for crystallographic analyses of macromolecular structures, while the neuronal network was automatically traced by using a Sobel filter. Neuronal circuits were then analytically resolved from the skeletonized models. We suggest that X-ray microtomography along with model building in the electron density map has potential as a method for understanding three-dimensional microstructures relevant to biological functions.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax4621 ◽  
Author(s):  
Hongyi Xu ◽  
Hugo Lebrette ◽  
Max T. B. Clabbers ◽  
Jingjing Zhao ◽  
Julia J. Griese ◽  
...  

Microcrystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables the study of biomolecules from micrometer-sized 3D crystals that are too small to be studied by conventional x-ray crystallography. However, to date, MicroED has only been applied to redetermine protein structures that had already been solved previously by x-ray diffraction. Here, we present the first new protein structure—an R2lox enzyme—solved using MicroED. The structure was phased by molecular replacement using a search model of 35% sequence identity. The resulting electrostatic scattering potential map at 3.0-Å resolution was of sufficient quality to allow accurate model building and refinement. The dinuclear metal cofactor could be located in the map and was modeled as a heterodinuclear Mn/Fe center based on previous studies. Our results demonstrate that MicroED has the potential to become a widely applicable tool for revealing novel insights into protein structure and function.


Author(s):  
Guillermo Calero ◽  
Aina E. Cohen ◽  
Joseph R. Luft ◽  
Janet Newman ◽  
Edward H. Snell

Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.


2019 ◽  
Vol 75 (12) ◽  
pp. 1119-1128 ◽  
Author(s):  
Emad Alharbi ◽  
Paul S. Bond ◽  
Radu Calinescu ◽  
Kevin Cowtan

A comparison of four protein model-building pipelines (ARP/wARP, Buccaneer, PHENIX AutoBuild and SHELXE) was performed using data sets from 202 experimentally phased cases, both with the data as observed and truncated to simulate lower resolutions. All pipelines were run using default parameters. Additionally, an ARP/wARP run was completed using models from Buccaneer. All pipelines achieved nearly complete protein structures and low R work/R free at resolutions between 1.2 and 1.9 Å, with PHENIX AutoBuild and ARP/wARP producing slightly lower R factors. At lower resolutions, Buccaneer leads to significantly more complete models.


2021 ◽  
Author(s):  
Pavel V. Afonine ◽  
Paul D. Adams ◽  
Oleg V Sobolev ◽  
Alexandre Urzhumtsev

Bulk solvent is a major component of bio-macromolecular crystals and therefore contributes significantly to diffraction intensities. Accurate modeling of the bulk-solvent region has been recognized as important for many crystallographic calculations, from computing of R-factors and density maps to model building and refinement. Owing to its simplicity and computational and modeling power, the flat (mask-based) bulk-solvent model introduced by Jiang & Brunger (1994) is used by most modern crystallographic software packages to account for disordered solvent. In this manuscript we describe further developments of the mask-based model that improves the fit between the model and the data and aids in map interpretation. The new algorithm, here referred to as mosaic bulk-solvent model, considers solvent variation across the unit cell. The mosaic model is implemented in the computational crystallography toolbox and can be used in Phenix in most contexts where accounting for bulk-solvent is required. It has been optimized and validated using a sufficiently large subset of the Protein Data Bank entries that have crystallographic data available.


2019 ◽  
Author(s):  
H. Xu ◽  
H. Lebrette ◽  
M.T.B. Clabbers ◽  
J. Zhao ◽  
J.J. Griese ◽  
...  

AbstractMicro-crystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables studying biomolecules from micron-sized 3D crystals that are too small to be studied by conventional X-ray crystallography. However, to the best of our knowledge, MicroED has only been applied to re-determine protein structures that had already been solved previously by X-ray diffraction. Here we present the first unknown protein structure – an R2lox enzyme – solved using MicroED. The structure was phased by molecular replacement using a search model of 35% sequence identity. The resulting electrostatic scattering potential map at 3.0 Å resolution was of sufficient quality to allow accurate model building and refinement. Our results demonstrate that MicroED has the potential to become a widely applicable tool for revealing novel insights into protein structure and function, opening up new opportunities for structural biologists.


Sign in / Sign up

Export Citation Format

Share Document