scholarly journals Humoral immune response to adenovirus induce tolerogenic bystander dendritic cells that promote generation of regulatory T cells

2018 ◽  
Author(s):  
Thi Thu Phuong Tran ◽  
Karsten Eichholz ◽  
Patrizia Amelio ◽  
Crystal Moyer ◽  
Glen R Nemerow ◽  
...  

AbstractFollowing repeated encounters with adenoviruses most of us develop robust humoral and cellular immune responses that are thought to act together to combat ongoing and subsequent infections. Yet in spite of robust immune responses, adenoviruses establish subclinical persistent infections that can last for decades. While adenovirus persistence pose minimal risk in B-cell compromised individuals, if T-cell immunity is severely compromised, reactivation of latent adenoviruses can be life threatening. This dichotomy led us to ask how anti-adenovirus antibodies influence adenovirus-specific T-cell immunity. Using primary human blood cells, transcriptome and secretome profiling, and pharmacological, biochemical, genetic, molecular, and cell biological approaches, we initially found that healthy adults harbor adenovirus-specific regulatory T cells (Tregs). As peripherally induced Tregsare generated by tolerogenic dendritic cells (DCs), we then addressed how tolerogenic DCs could be created. Here, we demonstrate that DCs that take up immunoglobulin-complexed (IC)-adenoviruses create an environment that causes bystander DCs to become tolerogenic. These adenovirus antigen-loaded tolerogenic DCs can drive naïve T cells to mature into adenovirus-specific Tregs. Our results may provide ways to improve antiviral therapy and/or pre-screening high-risk individuals undergoing immunosuppression.Author summaryWhile numerous studies have addressed the cellular and humoral response to primary virus encounters, relatively little is known about the interplay between persistent infections, neutralizing antibodies, antigen-presenting cells, and the T-cell response. Our studies suggests that if adenovirus–antibody complexes are taken up by professional antigen-presenting cells (dendritic cells), the DCs generate an environment that causes bystander dendritic cells to become tolerogenic. These tolerogenic dendritic cells favors the creation of adenovirus-specific regulatory T cells. While this pathway likely favors pathogen survival, there may be advantages for the host also.

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A39.1-A39
Author(s):  
M Arabpour ◽  
S Paul ◽  
R Kiffin ◽  
HG Wiktorin ◽  
K Hellstrand ◽  
...  

BackgroundSpecific targeting of anti-cancer vaccines to dendritic cells (DCs) has been shown to mount efficient immune responses against tumor cells. Classical CD103+dendritic cells (also called cDC1) have an inherent ability to cross-present antigens to CD8+ cytotoxic T cells. Here we have explored an anti-tumor vaccine that specifically targets cDC1 cells for protection against and elimination of metastatic melanoma. The vaccine contains the cholera toxin A1 subunit (CTA1) adjuvant and is targeted to cDC1 cells through an anti-CD103 single chain antibody (CD103 scFv).Material and MethodsC57BL/6 mice were injected with wild type or ovalbumin (OVA) expressing B16 melanoma cells either subcutaneously (s.c.) to establish solid tumors, or intravenously (i.v.) to allow the formation of pulmonary metastases. Before or after establishment of tumors, mice were intra-nasally inoculated with a vaccine composed of a CD103 scFv element fused to the adjuvant CTA1 and the MHC I H2kd-restricted OVA epitope SIINFEKL together with the MHC II H2kd-restricted OVA epitope p323 or just the p323 peptide alone (i.e. CTA1-SIINFEKL-p323-CD103 and CTA1-p323-CD103, respectively). Control mice were inoculated with PBS. The growth of solid tumors was carefully monitored and the development of pulmonary metastases was determined 2–3 weeks after tumor cell injection. In addition, antigen-specific T cell immunity following intranasal immunization was evaluated.ResultsTargeting MHC I and MHC II tumor cell epitopes to cDC1, via CD103 ScFv, in conjunction with the CTA1 adjuvant elicited strong tumor specific and protective CD8+ T cell responses as well as CD4+ T cell immunity. Immunization with the CTA1-SIINFEKL-p323-CD103 vaccine significantly reduced the growth of established solid B16F1-OVA melanomas (P<0.001) and potently prevented metastasis formation (P<0.01). Control immunizations with the CTA1-p323-CD103 vaccine tended to reduce metastasis, but tumor-specific CD8+ T cells were required for full therapeutic protection.ConclusionTargeting tumor specific CD8+ T cell epitopes to cDC1, in the context of a powerful adjuvant such as CTA1, leads to the development of efficient anti-tumor immune responses. Our results point towards the utility of cDC1-targeted vaccines in the treatment of established tumors or as a means to prevent metastasis formation.Disclosure InformationM. Arabpour: None. S. Paul: None. R. Kiffin: None. H.G. Wiktorin: None. K. Hellstrand: None. N. Lycke: None. A. Martner: None.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2390-2390
Author(s):  
David Peritt ◽  
Kim Campbell ◽  
Amy Krutsick ◽  
Janine Huber ◽  
Ulrich Thienel ◽  
...  

Abstract Extracorporeal photopheresis (ECP) is approved for the palliative treatment of skin manifestations associated with cutaneous T cell lymphoma. As reported in the literature, ECP has shown promise as a treatment for such immune-mediated inflammatory disorders as graft versus host disease, transplantation rejection, and autoimmune diseases. ECP involves the reinfusion of autologous, apoptotic peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen (8-MOP) and UVA light. The biological mechanism of action of ECP, however, remains unresolved. We have evidence to suggest that delivery of ECP-treated apoptotic cells modulates immune responses, possibly through generation of regulatory T cells. When co-incubated with ECP-treated cells, activated dendritic cells produce reduced levels of proinflammatory cytokines, such as IL-12, while TGFβ levels were modestly increased. Activation of CD4+ T cells in the presence of allogeneic dendritic cells and ECP-treated cells promotes generation of a population of T cells that can suppress proliferation of, and IFNγ production by, naïve syngeneic T cells. To confirm these findings in vivo, we employed a murine contact hypersensitivity model. ECP-treated or control spleen and lymph node cells from mice sensitized with the hapten dinitrofluorobenzene (DNFB) were injected intravenously into naïve recipients. Compared to controls, mice that received ECP-treated cells demonstrated significantly less ear swelling following sensitization and challenge with DNFB. Suppression of ear swelling was specific for DNFB and cell-mediated, as demonstrated by the ability to transfer DNFB tolerance to naïve mice, which could appropriately respond to the unrelated hapten oxazalone. Transfer of this tolerance was abrogated by depletion of either CD4+ or CD25+ T cell populations. Collectively, these results suggest that delivery of ECP-treated cells promotes the generation of regulatory T cells that are capable of modulating immune responses. Therakos sponsored Phase II trials for the prevention and treatment of GvHD are concluding and an international blinded pivotal phase III study is planned for 2005.


2022 ◽  
Vol 12 ◽  
Author(s):  
Valentina Ceglia ◽  
Sandra Zurawski ◽  
Monica Montes ◽  
Mitchell Kroll ◽  
Aurélie Bouteau ◽  
...  

CD40 is a potent activating receptor expressed on antigen-presenting cells (APCs) of the immune system. CD40 regulates many aspects of B and T cell immunity via interaction with CD40L expressed on activated T cells. Targeting antigens to CD40 via agonistic anti-CD40 antibody fusions promotes both humoral and cellular immunity, but current anti-CD40 antibody-antigen vaccine prototypes require co-adjuvant administration for significant in vivo efficacy. This may be a consequence of dulling of anti-CD40 agonist activity via antigen fusion. We previously demonstrated that direct fusion of CD40L to anti-CD40 antibodies confers superagonist properties. Here we show that anti-CD40-CD40L-antigen fusion constructs retain strong agonist activity, particularly for activation of dendritic cells (DCs). Therefore, we tested anti-CD40-CD40L antibody fused to antigens for eliciting immune responses in vitro and in vivo. In PBMC cultures from HIV-1-infected donors, anti-CD40-CD40L fused to HIV-1 antigens preferentially expanded HIV-1-specific CD8+ T cells versus CD4+ T cells compared to analogous anti-CD40-antigen constructs. In normal donors, anti-CD40-CD40L-mediated delivery of Influenza M1 protein elicited M1-specific T cell expansion at lower doses compared to anti-CD40-mediated delivery. Also, on human myeloid-derived dendritic cells, anti-CD40-CD40L-melanoma gp100 peptide induced more sustained Class I antigen presentation compared to anti-CD40-gp100 peptide. In human CD40 transgenic mice, anti-CD40-CD40L-HIV-1 gp140 administered without adjuvant elicited superior antibody responses compared to anti-CD40-gp140 antigen without fused CD40L. In human CD40 mice, compared to the anti-CD40 vehicle, anti-CD40-CD40L delivery of Eα 52-68 peptide elicited proliferating of TCR I-Eα 52-68 CD4+ T cells producing cytokine IFNγ. Also, compared to controls, only anti-CD40-CD40L-Cyclin D1 vaccination of human CD40 mice reduced implanted EO771.LMB breast tumor cell growth. These data demonstrate that human CD40-CD40L antibody fused to antigens maintains highly agonistic activity and generates immune responses distinct from existing low agonist anti-CD40 targeting formats. These advantages were in vitro skewing responses towards CD8+ T cells, increased efficacy at low doses, and longevity of MHC Class I peptide display; and in mouse models, a more robust humoral response, more activated CD4+ T cells, and control of tumor growth. Thus, the anti-CD40-CD40L format offers an alternate DC-targeting platform with unique properties, including intrinsic adjuvant activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ellen Van Gulck ◽  
Nathalie Cools ◽  
Derek Atkinson ◽  
Lotte Bracke ◽  
Katleen Vereecken ◽  
...  

A variety of immune-based therapies has been developed in order to boost or induce protective CD8+T cell responses in order to control HIV replication. Since dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique capability to stimulate naïve T cells into effector T cells, their use for the induction of HIV-specific immune responses has been studied intensively. In the present study we investigated whether modulation of the activation state of DCs electroporated with consensus codon-optimized HxB2gagmRNA enhances their capacity to induce HIVgag-specific T cell responses. To this end, mature DCs were (i) co-electroporated with mRNA encoding interleukin (IL)-12p70 mRNA, or (ii) activated with a cytokine cocktail consisting of R848 and interferon (IFN)-γ. Our results confirm the ability of HxB2gag-expressing DCs to expand functional HIV-specific CD8+T cells. However, although most of the patients had detectablegag-specific CD8+T cell responses, no significant differences in the level of expansion of functional CD8+T cells could be demonstrated when comparing conventional or immune-modulated DCs expressing IL-12p70. This result which goes against expectation may lead to a re-evaluation of the need for IL-12 expression by DCs in order to improve T-cell responses in HIV-1-infected individuals.


2002 ◽  
Vol 70 (9) ◽  
pp. 5167-5176 ◽  
Author(s):  
Ken Hashimoto ◽  
Yumi Maeda ◽  
Hiroaki Kimura ◽  
Koichi Suzuki ◽  
Akihiro Masuda ◽  
...  

ABSTRACT Host defense against Mycobacterium leprae infection is chiefly mediated by gamma interferon (IFN-γ)-secreting cytotoxic T cells. Since which antigen-presenting cell populations act to stimulate these T cells is not fully understood, we addressed the role of monocyte-derived dendritic cells (DCs). The DCs phagocytosed M. leprae and expressed bacterially derived antigens (Ags), such as phenolic glycolipid 1 (PGL-1), in the cytoplasm, as well as on the cell surface. The expression of HLA-ABC and -DR Ags on DCs was down-regulated by M. leprae infection, and that of CD86 was up-regulated, but not as fully as by Mycobacterium bovis BCG infection. Induction of CD83 expression required a large number of M. leprae cells. When a multiplicity of infection of >40 was used, the DCs induced a significant proliferative and IFN-γ-producing response in autologous T cells. However, these responses were significantly lower than those induced by BCG- or Mycobacterium avium-infected DCs. A CD40-mediated signaling in M. leprae-infected DCs up-regulated the expression of HLA Ags, CD86, and CD83 but did not enhance T-cell-stimulating ability. Therefore, M. leprae-infected DCs are less efficient at inducing T-cell responses. However, when the surface PGL-1 on M. leprae-infected DCs was masked by a monoclonal antibody, the DCs induced enhanced responses in both CD4+- and CD8+-T-cell subsets. M. leprae is a unique pathogen which remains resistant to DC-mediated T-cell immunity, at least in the early stages of infection.


2002 ◽  
Vol 76 (10) ◽  
pp. 5062-5070 ◽  
Author(s):  
Pablo Sarobe ◽  
Juan José Lasarte ◽  
Noelia Casares ◽  
Ascensión López-Díaz de Cerio ◽  
Elena Baixeras ◽  
...  

ABSTRACT Patients infected with hepatitis C virus (HCV) have an impaired response against HCV antigens while keeping immune competence for other antigens. We hypothesized that expression of HCV proteins in infected dendritic cells (DC) might impair their antigen-presenting function, leading to a defective anti-HCV T-cell immunity. To test this hypothesis, DC from normal donors were transduced with an adenovirus coding for HCV core and E1 proteins and these cells (DC-CE1) were used to stimulate T lymphocytes. DC-CE1 were poor stimulators of allogeneic reactions and of autologous primary and secondary proliferative responses. Autologous T cells stimulated with DC-CE1 exhibited a pattern of incomplete activation characterized by enhanced CD25 expression but reduced interleukin 2 production. The same pattern of incomplete lymphocyte activation was observed in CD4+ T cells responding to HCV core in patients with chronic HCV infection. However, CD4+ response to HCV core was normal in patients who cleared HCV after alpha interferon therapy. Moreover, a normal CD4+ response to tetanus toxoid was found in both chronic HCV carriers and patients who had eliminated the infection. Our results suggest that expression of HCV structural antigens in infected DC disturbs their antigen-presenting function, leading to incomplete activation of anti-HCV-specific T cells and chronicity of infection. However, presentation of unrelated antigens by noninfected DC would allow normal T-cell immunity to other pathogens.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 591-591
Author(s):  
Rui-Jun Su ◽  
Angela Epp ◽  
Xiaoping Wu ◽  
Neil Josephson

Abstract The development of anti-factor VIII (FVIII) inhibitory antibodies is currently the most significant complication of FVIII replacement therapy in the management of patients with hemophilia A. Infusion of in vitro generated tolerogenic dendritic cells (tDCs) loaded with foreign antigen has been shown to promote durable antigen-specific tolerance in vivo through mechanisms that involve the induction of regulatory T cells. In this study we evaluated the ability of tDCs transduced with a human B domain deleted FVIII transgene-expressing foamy virus (FV) vector to modulate the immune response to human FVIII in both naïve and pre-immunized hemophilia A mice. The tDCs were generated by flow sorting the population of CD11clowCD45RBhigh cells produced in culture of lineage negative bone marrow cells in RPMI1640/10%FBS supplemented with IL-10 and the neural peptides VIP and PACAP38. Expression of co-stimulatory molecules CD80 and CD86 and MHC Class II was negative or low on the generated tDCs and these cells remained un-activated even after stimulation with LPS or transduction by FV vectors. These tDCs produced low levels of IL-6 and TNF-α, and high level of IL-10. Furthermore, co-culture of the vector transduced tDCs with FVIII stimulated effector T cells (Teffs) resulted in decreased proliferation of Teffs and reduced secretion of IFN-γ and IL-2. In the cultures with the transduced tDCs there was also an increase in the number of apoptotic Teffs. Naïve Balb/c hemophilia A mice were treated with 2 weekly infusions of FVIII vector transduced tDCs (tDC-F8), control tDCs (tDCs-Ctrl), or no cells (Neg-Ctrl) prior to being challenged with four weekly intravenous doses of 0.2 μg rhFVIII. Following immunization the total cellularity and weights of spleens harvested from tDC-F8 mice were consistently half that of spleens from either tDC-Ctrl or Neg-Ctrl mice. Furthermore, inhibitor titers in tDC-F8 mice were 60–61% lower than either Neg-Ctrl or tDC-Ctrl mice (p &lt; 0.05 compared to both controls). The regulatory T cell related markers FOXP3, CD25, CD103, CTLA4 and GITR were all up-regulated on splenic CD4+ T cells from tDC-F8 mice and the CD4+ T cell proliferation response to FVIII stimulation in splenocytes from tDC-F8 mice was suppressed by approximately 90%. Moreover, the rate of apoptosis in splenic T cells from tDC-F8 mice was 33% higher than splenic T cells from either Neg-Ctrl or tDC-Ctrl mice. In pre-immunized mice, treatment with 4 weekly infusions of FVIII vector transduced tDCs lowered inhibitor titers by 54% compared to no treatment controls (p &lt; 0.05). In contrast, treatment with untransduced tDCs had no significant effect on the inhibitor titers of pre-immunized mice. Importantly, adoptive transfer of CD4+ T cells from tDC-8 mice produced suppression of the immune response to FVIII in subsequently immunized naïve secondary recipients.. In summary, these data indicate that FVIII vector transduced tDCs are useful in suppressing the immune response to FVIII in hemophilia A mice and suggest that regulatory T cells play a role in the induced immune modulation. More in vivo studies are in progress to confirm the durability of these effects. Future studies will also focus on isolating and characterizing the regulatory T cell populations induced by in vivo administration of transgene modified tDCs.


Sign in / Sign up

Export Citation Format

Share Document