scholarly journals Whole-genome sequences suggest long term declines of spotted owl (Strix occidentalis) (Aves: Strigiformes: Strigidae) populations in California

2018 ◽  
Author(s):  
Zachary R. Hanna ◽  
John P. Dumbacher ◽  
Rauri C.K. Bowie ◽  
Jeffrey D. Wall

AbstractWe analyzed whole-genome data of four spotted owls (Strix occidentalis) to provide a broad-scale assessment of the genome-wide nucleotide diversity across S. occidentalis populations in California. We assumed that each of the four samples was representative of its population and we estimated effective population sizes through time for each corresponding population. Our estimates provided evidence of long-term population declines in all California S. occidentalis populations. We found no evidence of genetic differentiation between northern spotted owl (S. o. caurina) populations in the counties of Marin and Humboldt in California. We estimated greater differentiation between populations at the northern and southern extremes of the range of the California spotted owl (S. o. occidentalis) than between populations of S. o. occidentalis and S. o. caurina in northern California. The San Diego County S. o. occidentalis population was substantially diverged from the other three S. occidentalis populations. These whole-genome data support a pattern of isolation-by-distance across spotted owl populations in California, rather than elevated differentiation between currently recognized subspecies.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1813 ◽  
Author(s):  
William Peterman ◽  
Emily R. Brocato ◽  
Raymond D. Semlitsch ◽  
Lori S. Eggert

In population or landscape genetics studies, an unbiased sampling scheme is essential for generating accurate results, but logistics may lead to deviations from the sample design. Such deviations may come in the form of sampling multiple life stages. Presently, it is largely unknown what effect sampling different life stages can have on population or landscape genetic inference, or how mixing life stages can affect the parameters being measured. Additionally, the removal of siblings from a data set is considered best-practice, but direct comparisons of inferences made with and without siblings are limited. In this study, we sampled embryos, larvae, and adultAmbystoma maculatumfrom five ponds in Missouri, and analyzed them at 15 microsatellite loci. We calculated allelic richness, heterozygosity and effective population sizes for each life stage at each pond and tested for genetic differentiation (FSTandDC) and isolation-by-distance (IBD) among ponds. We tested for differences in each of these measures between life stages, and in a pooled population of all life stages. All calculations were done with and without sibling pairs to assess the effect of sibling removal. We also assessed the effect of reducing the number of microsatellites used to make inference. No statistically significant differences were found among ponds or life stages for any of the population genetic measures, but patterns of IBD differed among life stages. There was significant IBD when using adult samples, but tests using embryos, larvae, or a combination of the three life stages were not significant. We found that increasing the ratio of larval or embryo samples in the analysis of genetic distance weakened the IBD relationship, and when usingDC, the IBD was no longer significant when larvae and embryos exceeded 60% of the population sample. Further, power to detect an IBD relationship was reduced when fewer microsatellites were used in the analysis.


2020 ◽  
Author(s):  
Solomon T. C. Chak ◽  
Stephen E. Harris ◽  
Kristin M. Hultgren ◽  
J. Emmett Duffy ◽  
Dustin R. Rubenstein

AbstractEusocial animals often achieve ecological dominance in the ecosystems where they occur, a process that may be linked to their demography. That is, reproductive division of labor and high reproductive skew in eusocial species is predicted to result in more stable effective population sizes that may make groups more competitive, but also lower effective population sizes that may make groups more susceptible to inbreeding and extinction. We examined the relationship between demography and social organization in one of the few animal lineages where eusociality has evolved recently and repeatedly among close relatives, the Synalpheus snapping shrimps. Although eusocial species often dominate the reefs where they occur by outcompeting their non-eusocial relatives for access to sponge hosts, many eusocial species have recently become extirpated across the Caribbean. Coalescent-based historical demographic inference in 12 species found that across nearly 100,000 generations, eusocial species tended to have lower but more stable effective population sizes through time. Our results are consistent with the idea that stable population sizes may enable eusocial shrimps to be more competitively dominant, but they also suggest that recent population declines are likely caused by eusocial shrimps’ heightened sensitivity to anthropogenically-driven environmental changes as a result of their low effective population sizes and localized dispersal, rather than to natural cycles of inbreeding and extinction. Thus, although the unique life histories and demography of eusocial shrimps has likely contributed to their persistence and ecological dominance over evolutionary timescales, these social traits may also make them vulnerable to contemporary environmental change.


2019 ◽  
Author(s):  
M. Elise Lauterbur

AbstractPopulation genetics employs two major models for conceptualizing genetic relationships among individuals – outcome-driven (coalescent) and process-driven (forward). These models are complementary, but the basic Kingman coalescent and its extensions make fundamental assumptions to allow analytical approximations: a constant effective population size much larger than the sample size. These make the probability of multiple coalescent events per generation negligible. Although these assumptions are often violated in species of conservation concern, conservation genetics often uses coalescent models of effective population sizes and trajectories in endangered species. Despite this, the effect of very small effective population sizes, and their interaction with bottlenecks and sample sizes, on such analyses of genetic diversity remains unexplored. Here, I use simulations to analyze the influence of small effective population size, population decline, and their relationship with sample size, on coalescent-based estimates of genetic diversity. Compared to forward process-based estimates, coalescent models significantly overestimate genetic diversity in oversampled populations with very small effective sizes. When sampled soon after a decline, coalescent models overestimate genetic diversity in small populations regardless of sample size. Such overestimates artificially inflate estimates of both bottleneck and population split times. For conservation applications with small effective population sizes, forward simulations that do not make population size assumptions are computationally tractable and should be considered instead of coalescent-based models. These findings underscore the importance of the theoretical basis of analytical techniques as applied to conservation questions.


2019 ◽  
Author(s):  
C. Schmidt ◽  
M. Domaratzki ◽  
R.P. Kinnunen ◽  
J. Bowman ◽  
C.J. Garroway

AbstractUrbanization and associated environmental changes are causing global declines in vertebrate populations. In general, population declines of the magnitudes now detected should lead to reduced effective population sizes for animals living in proximity to humans and disturbed lands. This is cause for concern because effective population sizes set the rate of genetic diversity loss due to genetic drift, the rate of increase in inbreeding, and the efficiency with which selection can act on beneficial alleles. We predicted that the effects of urbanization should decrease effective population size and genetic diversity, and increase population-level genetic differentiation. To test for such patterns, we repurposed and reanalyzed publicly archived genetic data sets for North American birds and mammals. After filtering, we had usable raw genotype data from 85 studies and 41,023 individuals, sampled from 1,008 locations spanning 41 mammal and 25 bird species. We used census-based urban-rural designations, human population density, and the Human Footprint Index as measures of urbanization and habitat disturbance. As predicted, mammals sampled in more disturbed environments had lower effective population sizes and genetic diversity, and were more genetically differentiated from those in more natural environments. There were no consistent relationships detectable for birds. This suggests that, in general, mammal populations living near humans may have less capacity to respond adaptively to further environmental changes, and be more likely to suffer from effects of inbreeding.


The Auk ◽  
2019 ◽  
Vol 136 (2) ◽  
Author(s):  
Joseph D Manthey ◽  
Stéphane Boissinot ◽  
Robert G Moyle

Abstract Evolutionary biologists have long used behavioral, ecological, and genetic data from contact zones between closely related species to study various phases of the speciation continuum. North America has several concentrations of avian contact zones, where multiple pairs of sister lineages meet, with or without hybridization. In a southern California contact zone, 2 species of woodpeckers, Nuttall’s Woodpecker (Dryobates nuttallii) and the Ladder-backed Woodpecker (D. scalaris), occasionally hybridize. We sampled these 2 species in a transect across this contact zone and included samples of their closest relative, the Downy Woodpecker (D. pubescens), to obtain large single nucleotide polymorphism panels using restriction-site associated DNA sequencing (RAD-seq). Furthermore, we used whole-genome resequencing data for 2 individuals per species to identify whether patterns of diversity inferred from RAD-seq were representative of whole-genome diversity. We found that these 3 woodpecker species are genomically distinct. Although low levels of gene flow occur between D. nuttallii and D. scalaris across the contact zone, there was no evidence for widespread genomic introgression between these 2 species. Overall patterns of genomic diversity from the RAD-seq and wholegenome datasets appear to be related to distributional range size and, by extension, are likely related to effective population sizes for each species.


2013 ◽  
Vol 77 (7) ◽  
pp. 1449-1458 ◽  
Author(s):  
Mary M. Conner ◽  
John J. Keane ◽  
Claire V. Gallagher ◽  
Gretchen Jehle ◽  
Thomas E. Munton ◽  
...  

The Condor ◽  
2006 ◽  
Vol 108 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Jennifer A. Blakesley ◽  
David R. Anderson ◽  
Barry R. Noon

Abstract Spotted Owls (Strix occidentalis) are territorial, generally nonmigratory, and strongly philopatric. Nevertheless, California Spotted Owls (S. o. occidentalis) exhibited breeding dispersal during 7% of interannual observations of banded individuals (n = 54 of 743 occasions). Based on ecological theory and published literature, we made a priori predictions about the factors associated with the probability of breeding dispersal and breeding dispersal distance, and about the consequences of dispersal. Breeding dispersal probability was higher for younger owls, single owls, paired owls that lost their mates, owls at lower quality sites, and owls that failed to reproduce in the year preceding dispersal. Sex had little effect on the probability of breeding dispersal. Dispersal distance was similar for female and male owls (median = 7 km, range = 1–33 km). We found no strong relationships between dispersal distance and any of the conditions that were associated with the probability of breeding dispersal. Dispersal resulted in improved territory quality in 72% of cases. These results indicate that breeding dispersal was condition-dependent and adaptive.


2004 ◽  
pp. 1-54 ◽  
Author(s):  
Alan B. Franklin ◽  
R. J. Gutiérrez ◽  
James D. Nichols ◽  
Mark E. Seamans ◽  
Gary C. White ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Abdessamad Ouhrouch ◽  
Simon Boitard ◽  
Frédéric Boyer ◽  
Bertrand Servin ◽  
Anne Da Silva ◽  
...  

Sheep farming is a major source of meat in Morocco and plays a key role in the country’s agriculture. This study aims at characterizing the whole-genome diversity and demographic history of the main Moroccan sheep breeds, as well as to identify selection signatures within and between breeds. Whole genome data from 87 individuals representing the five predominant local breeds were used to estimate their level of neutral genetic diversity and to infer the variation of their effective population size over time. In addition, we used two methods to detect selection signatures: either for detecting selective sweeps within each breed separately or by detecting differentially selected regions by contrasting different breeds. We identified hundreds of genomic regions putatively under selection, which related to several biological terms involved in local adaptation or the expression of zootechnical performances such as Growth, UV protection, Cell maturation or Feeding behavior. The results of this study revealed selection signatures in genes that have an important role in traits of interest and increased our understanding of how genetic diversity is distributed in these local breeds. Thus, Moroccan local sheep breeds exhibit both a high genetic diversity and a large set of adaptive variations, and therefore, represent a valuable genetic resource for the conservation of sheep in the context of climate change.


Sign in / Sign up

Export Citation Format

Share Document