scholarly journals Downregulation of the central noradrenergic system by Toxoplasma gondii infection

2018 ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

AbstractThe parasitic protozoan Toxoplasma gondii becomes encysted in brain and muscle tissue during chronic infection, a stage that was previously thought to be dormant but has been found to be active and associated with physiological effects in the host. Dysregulation of catecholamines in the CNS has previously been observed in chronically-infected animals. In the study described here, the noradrenergic system was suppressed with decreased levels of norepinephrine in brains of infected animals and in infected neuronal cells in vitro. Expression of dopamine β-hydroxylase (DBH), essential for synthesis of norepinephrine from dopamine, was the most differentially-expressed gene in infections in vitro and was down-regulated in infected brain tissue, particularly in the prefrontal cortex and dorsal locus coeruleus/pons region. The down-regulated DBH expression in infected rat catecholaminergic and human neuronal cells corresponded with decreased norepinephrine and increased dopamine. As the DBH suppression was observed in vitro, this effect is not caused by neuroinflammation. Silencing of DBH expression was specific for T. gondii infection and was not observed with CMV infection. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically-infected animals, with a high correlation between DBH expression and infection intensity. These findings together provide a plausible mechanism to explain prior discrepancies in changes to CNS neurotransmitters levels with infection. The suppression of norepinephrine synthesis observed here may, in part, explain behavioural effects of infection, associations with mental illness, and neurological consequences of infection such as the loss of coordination and motor impairments associated with human toxoplasmosis.

2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

ABSTRACT Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro. The mechanism responsible for the NE suppression was found to be downregulation of dopamine β-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


2018 ◽  
Vol 8 ◽  
Author(s):  
Karina Zitta ◽  
Cacha Peeters-Scholte ◽  
Lena Sommer ◽  
Matthias Gruenewald ◽  
Lars Hummitzsch ◽  
...  

2000 ◽  
Vol 12 (7) ◽  
pp. 1015-1023 ◽  
Author(s):  
Anne Thomas ◽  
Philippe Gasque ◽  
David Vaudry ◽  
Bruno Gonzalez ◽  
Marc Fontaine

2002 ◽  
Vol 17 ◽  
pp. 195
Author(s):  
O. von Widdern ◽  
O. Wirths ◽  
H. Boenisch ◽  
T. Bayer ◽  
W. Maier ◽  
...  

Author(s):  
Laura V. Souza ◽  
Marcos P. O. Almeida ◽  
Neide M. Silva ◽  
Natália C. de Miranda ◽  
Liliane Nebo ◽  
...  

2020 ◽  
Vol 8 (9) ◽  
pp. 1386
Author(s):  
Alaa T. Al-sandaqchi ◽  
Victoria Marsh ◽  
Huw E. L. Williams ◽  
Carl W. Stevenson ◽  
Hany M. Elsheikha

Toxoplasma gondii (T. gondii), the causative agent of toxoplasmosis, is a frequent cause of brain infection. Despite its known ability to invade the brain, there is still a dire need to better understand the mechanisms by which this parasite interacts with and crosses the blood–brain barrier (BBB). The present study revealed structural and functional changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. T. gondii proliferated within the BMECs and disrupted the integrity of the cerebrovascular barrier through diminishing the cellular viability, disruption of the intercellular junctions and increasing permeability of the BMEC monolayer, as well as altering lipid homeostasis. Proton nuclear magnetic resonance (1H NMR)-based metabolomics combined with multivariate data analysis revealed profiles that can be attributed to infection and variations in the amounts of certain metabolites (e.g., amino acids, fatty acids) in the extracts of infected compared to control cells. Notably, treatment with the Ca2+ channel blocker verapamil rescued BMEC barrier integrity and restricted intracellular replication of the tachyzoites regardless of the time of treatment application (i.e., prior to infection, early- and late-infection). This study provides new insights into the structural and functional changes that accompany T. gondii infection of the BMECs, and sheds light upon the ability of verapamil to inhibit the parasite proliferation and to ameliorate the adverse effects caused by T. gondii infection.


2019 ◽  
Vol 54 ◽  
pp. 280-285 ◽  
Author(s):  
Oluyomi Stephen Adeyemi ◽  
David Adeiza Otohinoyi ◽  
Oluwakemi Josephine Awakan ◽  
Adebukola Anne Adeyanju

Sign in / Sign up

Export Citation Format

Share Document