scholarly journals Applying biophysical models to understand the role of white matter in cognitive development

2018 ◽  
Author(s):  
Elizabeth Huber ◽  
Rafael Neto Henriques ◽  
Julia P. Owen ◽  
Ariel Rokem ◽  
Jason D. Yeatman

AbstractDiffusion MRI (dMRI) holds great promise for illuminating the biological changes that underpin cognitive development. The diffusion of water molecules probes the cellular structure of brain tissue, and biophysical modeling of the diffusion signal can be used to make inferences about specific tissue properties that vary over development or predict cognitive performance. However, applying these models to study development requires that the parameters can be reliably estimated given the constraints of data collection with children. Here we collect repeated scans using a multi-shell diffusion MRI protocol in a group of children (ages 7-12) and use two popular biophysical models to characterize axonal properties. We first assess the scan-rescan reliability of model parameters and show that axon water faction can be reliably estimated from a relatively fast acquisition, without applying spatial smoothing or de-noising. We then investigate developmental changes in the white matter, and individual differences in white matter that correlate with reading skill. Specifically, we test the hypothesis that previously reported correlations between reading skill and diffusion anisotropy in the corpus callosum reflect increased axon density in poor readers. Both models support this interpretation, highlighting the utility of biophysical models for testing specific hypotheses about cognitive development.

2018 ◽  
Author(s):  
Elizabeth Huber ◽  
Patrick M. Donnelly ◽  
Ariel Rokem ◽  
Jason D. Yeatman

AbstractWhite matter tissue properties correlate with children’s performance across domains ranging from reading, to math, to executive function. We use a longitudinal intervention design to examine experience-dependent growth in reading skills and white matter in a group of grade school aged, struggling readers. Diffusion MRI data were collected at regular intervals during an 8-week, intensive reading intervention. These measurements reveal large-scale changes throughout a collection of white matter tracts, in concert with growth in reading skill. Additionally, we identify tracts whose properties predict reading skill but remain fixed throughout the intervention, suggesting that some anatomical properties may stably predict the ease with which a child learns to read, while others dynamically reflect the effects of experience. These results underscore the importance of considering recent experience when interpreting cross-sectional anatomy-behavior correlations. Widespread changes throughout the white matter may be a hallmark of rapid plasticity associated with an intensive learning experience.


Author(s):  
C. Roman ◽  
D. Le Bihan ◽  
C. Poupon ◽  
P. Guevara ◽  
A. Lebois ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luke Baxter ◽  
Fiona Moultrie ◽  
Sean Fitzgibbon ◽  
Marianne Aspbury ◽  
Roshni Mansfield ◽  
...  

AbstractUnderstanding the neurophysiology underlying neonatal responses to noxious stimulation is central to improving early life pain management. In this neonatal multimodal MRI study, we use resting-state and diffusion MRI to investigate inter-individual variability in noxious-stimulus evoked brain activity. We observe that cerebral haemodynamic responses to experimental noxious stimulation can be predicted from separately acquired resting-state brain activity (n = 18). Applying this prediction model to independent Developing Human Connectome Project data (n = 215), we identify negative associations between predicted noxious-stimulus evoked responses and white matter mean diffusivity. These associations are subsequently confirmed in the original noxious stimulation paradigm dataset, validating the prediction model. Here, we observe that noxious-stimulus evoked brain activity in healthy neonates is coupled to resting-state activity and white matter microstructure, that neural features can be used to predict responses to noxious stimulation, and that the dHCP dataset could be utilised for future exploratory research of early life pain system neurophysiology.


2020 ◽  
Vol 7 (3) ◽  
pp. 96
Author(s):  
Despoina Brasinika ◽  
Elias P. Koumoulos ◽  
Kyriaki Kyriakidou ◽  
Eleni Gkartzou ◽  
Maria Kritikou ◽  
...  

Bioinspired scaffolds mimicking natural bone-tissue properties holds great promise in tissue engineering applications towards bone regeneration. Within this work, a way to reinforce mechanical behavior of bioinspired bone scaffolds was examined by applying a physical crosslinking method. Scaffolds consisted of hydroxyapatite nanocrystals, biomimetically synthesized in the presence of collagen and l-arginine. Scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), microcomputed tomography, and nanoindentation. Results revealed scaffolds with bone-like nanostructure and composition, thus an inherent enhanced cytocompatibility. Evaluation of porosity proved the development of interconnected porous network with bimodal pore size distribution. Mechanical reinforcement was achieved through physical crosslinking with riboflavin irradiation, and nanoindentation tests indicated that within the experimental conditions of 45% humidity and 37 °C, photo-crosslinking led to an increase in the scaffold’s mechanical properties. Elastic modulus and hardness were augmented, and specifically elastic modulus values were doubled, approaching equivalent values of trabecular bone. Cytocompatibility of the scaffolds was assessed using MG63 human osteosarcoma cells. Cell viability was evaluated by double staining and MTT assay, while attachment and morphology were investigated by SEM. The results suggested that scaffolds provided a cell friendly environment with high levels of viability, thus supporting cell attachment, spreading and proliferation.


NeuroImage ◽  
2016 ◽  
Vol 127 ◽  
pp. 277-286 ◽  
Author(s):  
Anastasia Yendiki ◽  
Martin Reuter ◽  
Paul Wilkens ◽  
H. Diana Rosas ◽  
Bruce Fischl

2021 ◽  
Vol 89 (9) ◽  
pp. S85
Author(s):  
Suheyla Cetin-Karayumak ◽  
Ofer Pasternak ◽  
Fan Zhang ◽  
Johanna Seitz ◽  
Doron Elad ◽  
...  

Author(s):  
Bryce L. Geeraert ◽  
Jess E. Reynolds ◽  
Catherine Lebel

Diffusion magnetic resonance imaging (dMRI) is a versatile tool which can be applied to investigate brain microstructure. This chapter outlines brain development trajectories from infancy to adulthood as described by dMRI. The chapter focuses on white matter development, as dMRI is particularly well suited to describing white matter tissue properties. The chapter also discusses sources of individual variation which are simultaneously fascinating and confounding to research efforts. Next, the chapter discusses links between white matter development and cognition, with specific examples drawn from reading research. Additional techniques which may complement future diffusion-based research are introduced in the chapter’s final section.


2019 ◽  
Vol 40 (8) ◽  
pp. 2529-2545 ◽  
Author(s):  
Björn Lampinen ◽  
Filip Szczepankiewicz ◽  
Mikael Novén ◽  
Danielle Westen ◽  
Oskar Hansson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document