physical crosslinking
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4028
Author(s):  
Chi Gong ◽  
Zhiyuan Kong ◽  
Xiaohong Wang

In three-dimensional (3D) bioprinting, the accuracy, stability, and mechanical properties of the formed structure are very important to the overall composition and internal structure of the complex organ. In traditional 3D bioprinting, low-temperature gelatinization of gelatin is often used to construct complex tissues and organs. However, the hydrosol relies too much on the concentration of gelatin and has limited formation accuracy and stability. In this study, we take advantage of the physical crosslinking of agarose at 35–40 °C to replace the single pregelatinization effect of gelatin in 3D bioprinting, and printing composite gelatin/alginate/agarose hydrogels at two temperatures, i.e., 10 °C and 24 °C, respectively. After in-depth research, we find that the structures manufactured by the pregelatinization method of agarose are significantly more accurate, more stable, and harder than those pregelatined by gelatin. We believe that this research holds the potential to be widely used in the future organ manufacturing fields with high structural accuracy and stability.


2021 ◽  
Author(s):  
Rishabh A. Shah ◽  
Tyler Runge ◽  
Thomas W. Ostertag ◽  
Shuo Tang ◽  
Thomas D. Dziubla ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3161
Author(s):  
Chloé Larrue ◽  
Véronique Bounor-Legaré ◽  
Philippe Cassagnau

The objective of this study was to replace elastomer crosslinking based on chemical covalent bonds by reversible systems under processing. One way is based on ionic bonds creation, which allows a physical crosslinking while keeping the process reversibility. However, due to the weak elasticity recovery of such a physical network after a long period of compression, the combination of both physical and chemical networks was studied. In that frame, an ethylene-propylene-diene terpolymer grafted with maleic anhydride (EPDM-g-MA) was crosslinked with metal salts and/or dicumyl peroxide (DCP). Thus, the influence of these two types of crosslinking networks and their combination were studied in detail in terms of compression set. The second part of this work was focused on the influence of different metallic salts (KOH, ZnAc2) and the sensitivity to the water of the physical crosslinking network. Finally, the combination of ionic and covalent network allowed combining the processability and better mechanical properties in terms of recovery elasticity. KAc proved to be the best ionic candidate to avoid water degradation of the ionic network and then to preserve the elasticity recovery properties under aging.


2021 ◽  
Vol 5 (9) ◽  
pp. 240
Author(s):  
Alberto García-Peñas ◽  
Weijun Liang ◽  
Saud Hashmi ◽  
Gaurav Sharma ◽  
Mohammad Reza Saeb ◽  
...  

Recently, it was reported that the physical crosslinking exhibited by some biopolymers could provide multiple benefits to biomedical applications. In particular, grafting thermoresponsive polymers onto biopolymers may enhance the degradability or offer other features, as thermothickening behavior. Thus, different interactions will affect the different hydrogen bonds and interactions from the physical crosslinking of carboxymethyl cellulose, the lower critical solution temperatures (LCSTs), and the presence of the ions. This work focuses on the study of blends composed of poly(N-isopropylacrylamide), poly(N-ethylacrylamide), and carboxymethyl cellulose in water and water/methanol. The molecular features, thermoresponsive behavior, and gelation phenomena are deeply studied. The ratio defined by both homopolymers will alter the final properties and the gelation of the final structures, showing that the presence of the hydrophilic groups modifies the number and contributions of the diverse hydrogen bonds.


2021 ◽  
pp. 118495
Author(s):  
Liang Liu ◽  
Ying Liu ◽  
Huazhong Ma ◽  
Junhua Xu ◽  
Yimin Fan ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1777
Author(s):  
Minzi Liu ◽  
Mei Zhang ◽  
Jiangtao Zhang ◽  
Yanliang Qiao ◽  
Pengcheng Zhai

Isotropic polydimethylsiloxane (PDMS)-based magnetorheological elastomers (MREs) filled with various contents of graphene oxide (GO) additive were fabricated by the solution blending-casting method in this work. The morphologies of the produced MREs were characterized, and the results indicate that the uniform distribution of GO sheets and carbonyl iron particles (CIPs) becomes difficult with the increase of GO content. The steady-state and dynamic shear properties of the MREs under different magnetic field strengths were evaluated using parallel plate rheometer. It was found that the physical stiffness effect of GO sheets leads to the increase of the zero-field shear modulus with increasing GO content under both the steady-state and dynamic shear loads. The chemical crosslinking density of PDMS matrix decreases with the GO content due to the strong physical crosslinking between GO and the PDMS matrix. Thus, the MREs filled with higher GO content exhibit more fluid-like behavior. Under the dynamic shear load, the absolute MR effect increases with the GO content due to the increased flexibility of the PDMS matrix and the dynamic self-stiffening effect occurring in the physical crosslinking interfaces around GO sheets. The highest relative MR effect was achieved by the MREs filled with 0.1 wt.% GO sheets. Then, the relative MR effect decreases with the further increase of GO content due to the improved zero-field modulus and the increased agglomerations of GO and CIPs. This study shows that the addition of GO sheets is a possible way to prepare new MREs with high MR effect, while simultaneously possessing high zero-field stiffness and load bearing capability.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2325
Author(s):  
Rodolpho Fagundes Correa ◽  
Giovana Colucci ◽  
Noureddine Halla ◽  
João Alves Pinto ◽  
Arantzazu Santamaria-Echart ◽  
...  

Microencapsulation procedures have recently focused attention on designing novel microspheres via green synthesis strategies. The use of chitosan (CS) as an encapsulating material has increased interest due to its unique bioactive properties and the various crosslinking possibilities offered by their functional groups. The consolidation of the microspheres by physical crosslinking using sodium tripolyphosphate (TPP) combined with chemical crosslinking using vanillin (VA) open new opportunities in the framework of green dual crosslinking strategies. The developed strategy, a straightforward technique based on an aqueous medium avoiding complex separation/washing steps, offers advantages over the processes based on VA, mostly using water-in-oil emulsion approaches. Thus, in this work, the combination of TPP crosslinking (3, 5, and 10 wt.%) via spray-coagulation technique with two VA crosslinking methods (in situ and post-treatment using 1 wt.% VA) were employed in the preparation of microspheres. The microspheres were characterized concerning morphology, particle size, physicochemical properties, thermal stability, and swelling behavior. Results revealed that the combination of 5 wt.% TPP with in situ VA crosslinking led to microspheres with promising properties, being an attractive alternative for natural bioactives encapsulation due to the green connotations associated with the process.


Sign in / Sign up

Export Citation Format

Share Document