Diffusion imaging perspectives on brain development in childhood and adolescence

Author(s):  
Bryce L. Geeraert ◽  
Jess E. Reynolds ◽  
Catherine Lebel

Diffusion magnetic resonance imaging (dMRI) is a versatile tool which can be applied to investigate brain microstructure. This chapter outlines brain development trajectories from infancy to adulthood as described by dMRI. The chapter focuses on white matter development, as dMRI is particularly well suited to describing white matter tissue properties. The chapter also discusses sources of individual variation which are simultaneously fascinating and confounding to research efforts. Next, the chapter discusses links between white matter development and cognition, with specific examples drawn from reading research. Additional techniques which may complement future diffusion-based research are introduced in the chapter’s final section.

2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
C. Leroy ◽  
S. Chanraud ◽  
E. Artiges ◽  
C. Martelli ◽  
A. Cachia ◽  
...  

Background:Brain models of drug addiction are being tackled in humans, using PET and MRI.Results:1.Whereas tobacco and cannabis do not interact directly with dopamine sites, positron emission tomography detected lower availability in sites regulating the catecholamines homeostasis, notably in dopamine transporter sites in striatal and in extrastriatal regions. This further supports repeated and long term substance use progress towards an adaptative diminished basal dopamine level that would contribute to the switch to an addicted brain.2.Alcohol: abnormalities in brain macro- and micro- structure were searched in detoxified alcohol-dependents with preserved psychosocial functioning:-Brain function (fMRI): fronto-cerebellar overactivation detected during an auditory language task in alcohol-dependents may reflect the compensatory effort required for patients to maintain the same level of performance as controls.-Brain macrostructure (MRI). Widespread lower white matter volumes, and lower grey matter volumes in the frontal lobe, insula, hippocampus, thalami and cerebellum, were detected. Poorer neuropsychological performance correlated with smaller grey matter volumes in these regions and with lower white matter volume in the brainstem.-Brain microstructure (DTI): tractography of white matter fiber bundles revealed that brainstem bundles alteration may contribute to cognitive flexibility impairment. Regression analyses showed memory scores were related to brain microstructure in parahippocampal areas, frontal cortex, and left temporal cortex. This suggest diffusion imaging (DTI) is a useful probe to early alcohol-induced brain alterations.Conclusion:While indices of dopamine down-regulation are consistency detected in several drug addictions, even “socially-adapted” alcohol dependence may induce change in brain structure.Psychol Med. 1998 28:1039-48.Neuropsychopharmacology. 2007 32:429-38.IEEE Trans Med Imaging. 2007 26:553-65J Nucl Med. 2007 48:538-46.Neuropsychopharmacology (Chanraud S et al., 2008 Jul 9. [Epub ahead of print]).J Clin Psychopharmacol (Leroy C et al, in press).


2020 ◽  
Author(s):  
Anne-Lise Goddings ◽  
David Roalf ◽  
Catherine Lebel ◽  
Christian K. Tamnes

Diffusion magnetic resonance imaging (dMRI) provides indirect measures of white matter microstructure that can be used to make inferences about structural connectivity within the brain. Over the last decade, a growing literature of cross-sectional and longitudinal studies have documented relationships between dMRI indices and cognitive development. In this review, we provide a brief overview of dMRI methods and how they can be used to study white matter and connectivity, briefly discuss challenges with using dMRI in child and adolescent populations, and review the extant literature examining the links between dMRI indices and executive functions during development. We explore the links between white matter microstructure and specific executive functions: inhibition, working memory and cognitive shifting, as well as performance on complex executive function tasks. Where there is concordance in findings across studies, this is highlighted, and potential explanations for discrepancies between results are discussed. Finally, we explore future directions that are necessary to better understand the links between child and adolescent development of executive functions and structural connectivity of the brain.


2005 ◽  
Vol 15 (12) ◽  
pp. 1848-1854 ◽  
Author(s):  
Naama Barnea-Goraly ◽  
Vinod Menon ◽  
Mark Eckert ◽  
Leanne Tamm ◽  
Roland Bammer ◽  
...  

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013250
Author(s):  
Deanne Thompson ◽  
Joseph Yuan-Mou Yang ◽  
Jian Chen ◽  
Claire Kelly ◽  
Christopher L Adamson ◽  
...  

Objective:To investigate brain regional white matter development in full-term (FT) and very preterm (VP) children at term-equivalent, 7 and 13 years of age based on the ratio of T1-weighted and T2-weighted magnetic resonance images (T1-w/T2-w), including: (1) whether longitudinal changes differ between birth groups or sexes; (2) associations with perinatal risk factors in VP children, and; (3) relationships with neurodevelopmental outcomes at 13 years.Methods:Prospective longitudinal cohort study of VP (born <30 weeks’ gestation or <1250 g) and FT infants born between 2001-2004 and followed up at term-equivalent age, 7 years of age and 13 years of age, including magnetic resonance imaging studies and neurodevelopmental assessments. T1-w/T2-w images were parcellated into 48 white matter regions of interest.Results:Of 224 VP participants and 76 FT participants, 197 VP and 55 FT participants had usable T1-w/T2-w data from at least one timepoint. T1-w/T2-w values increased between term-equivalent and 13 years of age, with little evidence that longitudinal changes varied between birth groups or sexes. VP birth, neonatal brain abnormalities, being small for gestational age and postnatal infection were associated with reduced regional T1-w/T2-w values in childhood and adolescence. Increased T1-w/T2-w values across the white matter at 13 years were associated with better motor and working memory function for all children. Within the FT group only, larger increases in T1-w/T2-w values from term-equivalent to 7 years were associated with poorer attention and executive function, and higher T1-w/T2-w values at 7 years were associated with poorer mathematics.Conclusion:VP birth and multiple known perinatal risk factors are associated with long-term reductions in the T1-w/T2-w ratio in white matter regions in childhood and adolescence, which may relate to alterations in microstructure and myelin content. Furthermore, increased T1-w/T2-w ratio at 13 years appeared to be associated with better motor and working memory function, and there appeared to be developmental differences between VP and FT children in the associations for attention, executive functioning and mathematics.


2020 ◽  
Author(s):  
Christos Pliatsikas ◽  
Lotte Meteyard ◽  
João Veríssimo ◽  
Vincent Deluca ◽  
Kyle Shattuck ◽  
...  

Bilingualism affects the structure of the brain in adults. This is indicated by experience-dependent gray and white matter changes in brain structures implicated in language learning, processing, or control. However, limited evidence exists on how bilingualism may influence brain development. We examined the developmental trajectories of both grey and white matter structures in a cross-sectional study of a large sample (N=711 for grey matter, N=637 for white matter) of bilingual and monolingual participants, aged 3-21 years. Metrics of grey matter (thickness, volume, surface area) and white matter (fractional anisotropy, mean diffusivity) were examined across 41 cortical and subcortical brain structures and 20 tracts, respectively. We used generalised additive modelling to analyse whether, how, and where the developmental trajectories of bilinguals and monolinguals might differ. Bilingual and monolingual participants manifested distinct developmental trajectories in both gray and white matter structures. As compared to monolinguals, bilinguals showed: a) more gray matter (less developmental loss) starting during late childhood and adolescence, mainly in frontal and parietal regions (particularly in inferior frontal gyrus pars opercularis, superior frontal cortex, inferior and superior parietal cortex, and the precuneus); and b) higher white matter integrity (greater developmental increase) starting during mid-late adolescence, specifically in striatal-inferior frontal fibers. The data suggest that there may be a developmental basis to the well-documented structural differences in the brain between bilingual and monolingual adults.


2017 ◽  
Author(s):  
Christian K. Tamnes ◽  
David R. Roalf ◽  
Anne-Lise Goddings ◽  
Catherine Lebel

AbstractDiffusion magnetic resonance imaging (dMRI) continues to grow in popularity as a useful neuroimaging method to study brain development, and longitudinal studies that track the same individuals over time are emerging. Over the last decade, seminal work using dMRI has provided new insights into the development of brain white matter (WM) microstructure, connections and networks throughout childhood and adolescence. This review provides an introduction to dMRI, both diffusion tensor imaging (DTI) and other dMRI models, as well as common acquisition and analysis approaches. We highlight the difficulties associated with ascribing these imaging measurements and their changes over time to specific underlying cellular and molecular events. We also discuss selected methodological challenges that are of particular relevance for studies of development, including critical choices related to image acquisition, image analysis, quality control assessment, and the within-subject and longitudinal reliability of dMRI measurements. Next, we review the exciting progress in the characterization and understanding of brain development that has resulted from dMRI studies in childhood and adolescence, including brief overviews and discussions of studies focusing on sex and individual differences. Finally, we outline future directions that will be beneficial to the field.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Edith Brignoni-Pérez ◽  
Maya Chan Morales ◽  
Virginia A. Marchman ◽  
Melissa Scala ◽  
Heidi M. Feldman ◽  
...  

Abstract Background Infants born very preterm (< 32 weeks gestational age (GA)) are at risk for developmental language delays. Poor language outcomes in children born preterm have been linked to neurobiological factors, including impaired development of the brain’s structural connectivity (white matter), and environmental factors, including decreased exposure to maternal speech in the neonatal intensive care unit (NICU). Interventions that enhance preterm infants’ exposure to maternal speech show promise as potential strategies for improving short-term health outcomes. Intervention studies have yet to establish whether increased exposure to maternal speech in the NICU offers benefits beyond the newborn period for brain and language outcomes. Methods This randomized controlled trial assesses the long-term effects of increased maternal speech exposure on structural connectivity at 12 months of age (age adjusted for prematurity (AA)) and language outcomes between 12 and 18 months of age AA. Study participants (N = 42) will include infants born very preterm (24–31 weeks 6/7 days GA). Newborns are randomly assigned to the treatment (n = 21) or standard medical care (n = 21) group. Treatment consists of increased maternal speech exposure, accomplished by playing audio recordings of each baby’s own mother reading a children’s book via an iPod placed in their crib/incubator. Infants in the control group have the identical iPod setup but are not played recordings. The primary outcome will be measures of expressive and receptive language skills, obtained from a parent questionnaire collected at 12–18 months AA. The secondary outcome will be measures of white matter development, including the mean diffusivity and fractional anisotropy derived from diffusion magnetic resonance imaging scans performed at around 36 weeks postmenstrual age during the infants’ routine brain imaging session before hospital discharge and 12 months AA. Discussion The proposed study is expected to establish the potential impact of increased maternal speech exposure on long-term language outcomes and white matter development in infants born very preterm. If successful, the findings of this study may help to guide NICU clinical practice for promoting language and brain development. This clinical trial has the potential to advance theoretical understanding of how early language exposure directly changes brain structure for later language learning. Trial registration NIH Clinical Trials (ClinicalTrials.gov) NCT04193579. Retrospectively registered on 10 December 2019.


2020 ◽  
Vol 117 (18) ◽  
pp. 10035-10044
Author(s):  
Xiaojie Wang ◽  
Verginia C. Cuzon Carlson ◽  
Colin Studholme ◽  
Natali Newman ◽  
Matthew M. Ford ◽  
...  

One factor that contributes to the high prevalence of fetal alcohol spectrum disorder (FASD) is binge-like consumption of alcohol before pregnancy awareness. It is known that treatments are more effective with early recognition of FASD. Recent advances in retrospective motion correction for the reconstruction of three-dimensional (3D) fetal brain MRI have led to significant improvements in the quality and resolution of anatomical and diffusion MRI of the fetal brain. Here, a rhesus macaque model of FASD, involving oral self-administration of 1.5 g/kg ethanol per day beginning prior to pregnancy and extending through the first 60 d of a 168-d gestational term, was utilized to determine whether fetal MRI could detect alcohol-induced abnormalities in brain development. This approach revealed differences between ethanol-exposed and control fetuses at gestation day 135 (G135), but not G110 or G85. At G135, ethanol-exposed fetuses had reduced brainstem and cerebellum volume and water diffusion anisotropy in several white matter tracts, compared to controls. Ex vivo electrophysiological recordings performed on fetal brain tissue obtained immediately following MRI demonstrated that the structural abnormalities observed at G135 are of functional significance. Specifically, spontaneous excitatory postsynaptic current amplitudes measured from individual neurons in the primary somatosensory cortex and putamen strongly correlated with diffusion anisotropy in the white matter tracts that connect these structures. These findings demonstrate that exposure to ethanol early in gestation perturbs development of brain regions associated with motor control in a manner that is detectable with fetal MRI.


2005 ◽  
Vol 360 (1457) ◽  
pp. 869-879 ◽  
Author(s):  
David S Tuch ◽  
Jonathan J Wisco ◽  
Mark H Khachaturian ◽  
Leeland B Ekstrom ◽  
Rolf Kötter ◽  
...  

Diffusion-weighted magnetic resonance imaging holds substantial promise as a technique for non-invasive imaging of white matter (WM) axonal projections. For diffusion imaging to be capable of providing new insight into the connectional neuroanatomy of the human brain, it will be necessary to histologically validate the technique against established tracer methods such as horseradish peroxidase and biocytin histochemistry. The macaque monkey provides an ideal model for histological validation of the diffusion imaging method due to the phylogenetic proximity between humans and macaques, the gyrencephalic structure of the macaque cortex, the large body of knowledge on the neuroanatomic connectivity of the macaque brain and the ability to use comparable magnetic resonance acquisition protocols in both species. Recently, it has been shown that high angular resolution diffusion imaging (HARDI) can resolve multiple axon orientations within an individual imaging voxel in human WM. This capability promises to boost the accuracy of tract reconstructions from diffusion imaging. If the macaque is to serve as a model for histological validation of the diffusion tractography method, it will be necessary to show that HARDI can also resolve intravoxel architecture in macaque WM. The present study therefore sought to test whether the technique can resolve intravoxel structure in macaque WM. Using a HARDI method called q -ball imaging (QBI) it was possible to resolve composite intravoxel architecture in a number of anatomic regions. QBI resolved intravoxel structure in, for example, the dorsolateral convexity, the pontine decussation, the pulvinar and temporal subcortical WM. The paper concludes by reviewing remaining challenges for the diffusion tractography project.


Sign in / Sign up

Export Citation Format

Share Document