scholarly journals Modeling of DNA replication in rapidly growing bacteria with one and two replication origins

2018 ◽  
Author(s):  
Renata Retkute ◽  
Michelle Hawkins ◽  
Christian J. Rudolph ◽  
Conrad A. Nieduszynski

AbstractIn rapidly growing bacteria initiation of DNA replication occurs at intervals shorter than the time required for completing genome duplication, leading to overlapping rounds of replication. We propose a mathematical model of DNA replication defined by the periodicity of replication initiation. Our model predicts that a steeper gradient of the replication profile is to be expected in origin proximal regions due to the overlapping rounds of synthesis. By comparing our model with experimental data from a strain with an additional replication origin, we predict defined alterations to replication parameters: (i) a reduced fork velocity when there were twice as many forks as normal; (ii) a slower fork speed if forks move in a direction opposite to normal, in line with head-on replication-transcription collisions being a major obstacle for fork progression; (iii) slower cell doubling for a double origin strain compared to wild-type cells; and (iv) potentially an earlier initiation of replication at the ectopic origin than at the natural origin, which, however, does not a˙ect the overall time required to complete synthesis.

2013 ◽  
Vol 41 (6) ◽  
pp. 1720-1725 ◽  
Author(s):  
Blanca Gómez-Escoda ◽  
Pei-Yun Jenny Wu

The accurate duplication and transmission of genetic information is critical for cell growth and proliferation, and this is ensured in part by the multi-layered regulation of DNA synthesis. One of the key steps in this process is the selection and activation of the sites of replication initiation, or origins, across the genome. Interestingly, origin usage changes during development and in different pathologies, suggesting an integral interplay between the establishment of replication initiation along the chromosomes and cellular function. The present review discusses how the spatiotemporal organization of replication origin activation may play crucial roles in the control of biological events.


2003 ◽  
Vol 185 (2) ◽  
pp. 573-580 ◽  
Author(s):  
Kenneth C. Keiler ◽  
Lucy Shapiro

ABSTRACT SsrA, or tmRNA, is a small RNA that interacts with selected translating ribosomes to target the nascent polypeptides for degradation. Here we report that SsrA activity is required for normal timing of the G1-to-S transition in Caulobacter crescentus. A deletion of the ssrA gene, or of the gene encoding SmpB, a protein required for SsrA activity, results in a specific delay in the cell cycle during the G1-to-S transition. The ssrA deletion phenotype is not due to accumulation of stalled ribosomes, because the deletion is not complemented by a mutated version of SsrA that releases ribosomes but does not target proteins for degradation. Degradation of the CtrA response regulator normally coincides with initiation of DNA replication, but in strains lacking SsrA activity there is a 40-min delay between the degradation of CtrA and replication initiation. This uncoupling of initiation of replication from CtrA degradation indicates that there is an SsrA-dependent pathway required for correct timing of DNA replication.


2019 ◽  
Vol 16 (3) ◽  
pp. 272-277 ◽  
Author(s):  
Rasmus N. Klitgaard ◽  
Anders Løbner-Olesen

Background:One of many strategies to overcome antibiotic resistance is the discovery of compounds targeting cellular processes, which have not yet been exploited.Materials and Methods:Using various genetic tools, we constructed a novel high throughput, cellbased, fluorescence screen for inhibitors of chromosome replication initiation in bacteria.Results:The screen was validated by expression of an intra-cellular cyclic peptide interfering with the initiator protein DnaA and by over-expression of the negative initiation regulator SeqA. We also demonstrated that neither tetracycline nor ciprofloxacin triggers a false positive result. Finally, 400 extracts isolated mainly from filamentous actinomycetes were subjected to the screen.Conclusion:We concluded that the presented screen is applicable for identifying putative inhibitors of DNA replication initiation in a high throughput setup.


2021 ◽  
Author(s):  
Dashiell J Massey ◽  
Amnon Koren

DNA replication occurs throughout the S phase of the cell cycle, initiating from replication origin loci that fire at different times. Debate remains about whether origins are a fixed set of loci used across all cells or a loose agglomeration of potential origins used stochastically in individual cells, and about how consistent their firing time during S phase is across cells. Here, we develop an approach for profiling DNA replication in single human cells and apply it to 2,305 replicating cells spanning the entire S phase. The resolution and scale of the data enabled us to specifically analyze initiation sites and show that these sites have confined locations that are consistently used among individual cells. Further, we find that initiation sites are activated in a similar, albeit not fixed, order across cells. Taken together, our results suggest that replication timing variability is constrained both spatially and temporally, and that the degree of variation is consistent across human cell lines.


2001 ◽  
Vol 183 (18) ◽  
pp. 5459-5464 ◽  
Author(s):  
Beatrice Grabowski ◽  
Zvi Kelman

ABSTRACT The initiator protein Cdc6 (Cdc18 in fission yeast) plays an essential role in the initiation of eukaryotic DNA replication. In yeast the protein is expressed before initiation of DNA replication and is thought to be essential for loading of the helicase onto origin DNA. The biochemical properties of the protein, however, are largely unknown. Using three archaeal homologues of Cdc6, it was found that the proteins are autophosphorylated on Ser residues. The winged-helix domain at the C terminus of Cdc6 interacts with DNA, which apparently regulates the autophosphorylation reaction. Yeast Cdc18 was also found to autophosphorylate, suggesting that this function of Cdc6 may play a widely conserved and essential role in replication initiation.


2010 ◽  
Vol 192 (15) ◽  
pp. 3893-3902 ◽  
Author(s):  
Antonio A. Iniesta ◽  
Nathan J. Hillson ◽  
Lucy Shapiro

ABSTRACT Caulobacter crescentus initiates a single round of DNA replication during each cell cycle. Following the initiation of DNA replication, the essential CckA histidine kinase is activated by phosphorylation, which (via the ChpT phosphotransferase) enables the phosphorylation and activation of the CtrA global regulator. CtrA∼P then blocks the reinitiation of replication while regulating the transcription of a large number of cell cycle-controlled genes. It has been shown that DNA replication serves as a checkpoint for flagellar biosynthesis and cell division and that this checkpoint is mediated by the availability of active CtrA. Because CckA∼P promotes the activation of CtrA, we addressed the question of what controls the temporal activation of CckA. We found that the initiation of DNA replication is a prerequisite for remodeling the new cell pole, which includes the localization of the DivL protein kinase to that pole and, consequently, the localization, autophosphorylation, and activation of CckA at that pole. Thus, CckA activation is dependent on polar remodeling and a DNA replication initiation checkpoint that is tightly integrated with the polar phospho-signaling cascade governing cell cycle progression.


2006 ◽  
Vol 26 (3) ◽  
pp. 1051-1062 ◽  
Author(s):  
Takayo Sasaki ◽  
Sunita Ramanathan ◽  
Yukiko Okuno ◽  
Chiharu Kumagai ◽  
Seemab S. Shaikh ◽  
...  

ABSTRACT Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP.


2006 ◽  
Vol 17 (1) ◽  
pp. 308-316 ◽  
Author(s):  
Prasanta K. Patel ◽  
Benoit Arcangioli ◽  
Stephen P. Baker ◽  
Aaron Bensimon ◽  
Nicholas Rhind

DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.


2000 ◽  
Vol 182 (10) ◽  
pp. 2989-2991 ◽  
Author(s):  
Katherine P. Lemon ◽  
Iren Kurtser ◽  
Judy Wu ◽  
Alan D. Grossman

ABSTRACT Initiation of spore formation in Bacillus subtilisappears to depend on initiation of DNA replication. This regulation was first identified using a temperature-sensitive mutation indnaB. We found that mutations in the replication initiation genes dnaA and dnaD also inhibit sporulation, indicating that inhibition of sporulation is triggered by general defects in the function of replication initiation proteins.


Sign in / Sign up

Export Citation Format

Share Document