scholarly journals Sequencing and characterization of the complete mitochondrial genome of Critically Endangered Black Soft-shell Turtle (Nilssonia nigricans)

2018 ◽  
Author(s):  
Shantanu Kundu ◽  
Vikas Kumar ◽  
Kaomud Tyagi ◽  
Rajasree Chakraborty ◽  
Devkant Singha ◽  
...  

AbstractThe complete mitochondrial genome (16796 bp) of an endangered freshwater turtle, Nilssonia nigricans was firstly sequenced and annotated. The mitogenome was encoded by 37 genes and a major non-coding Control Region (CR). The mitogenome was A+T biased (62.16%) and spread with six overlapping and 19 intergenic spacer regions. The initiation codons were exceptionally changed as ATA, ATT, and ATC in three Protein-coding genes (PCGs) and a single base (A, T, and C) incomplete termination codons in nine PCGs. The Relative synonymous codon usage (RSCU) value was consistent among all the studied species; exception with significant reduction of Serine (S) frequency in N. nigricans, N. formosa, and R. swinhoei. The secondary structure of N. nigricans showed a lack of conventional dihydrouridine (DHU) arm in trnS (GCT), as well as formed a small loop structure in the acceptor stem of both trnR (TCG) and trnH (GTG). The mitogenome of N. nigricans also revealed two unique tandem repeats (ATTAT)8, and (TATTA)20 in CR. Further, the average Ka/Ks values of 13 PCGs were indicating a strong natural selection in the studied Trionychidae species. The constructed Maximum Likelihood (ML) phylogeny by PCGs shows cohesive clustering of N. nigricans with N. formosa. The resulted phylogeny illustrated the similar topology by all studied species from different taxonomic ranks and supported the previous taxonomic classification. Moreover, further taxon sampling from different taxonomic hierarchy, and their mitogenomics study is vital to reconcile the Testudines phylogeny and assure their evolutionary relationship.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yu-Xuan Sun ◽  
Lei Wang ◽  
Guo-Qing Wei ◽  
Cen Qian ◽  
Li-Shang Dai ◽  
...  

Abstract The complete mitochondrial genome (mitogenome) of Leucoma salicis (Lepidoptera: Lymantriidae) was sequenced and annotated. It is a circular molecule of 15,334 bp, containing the 37 genes usually present in insect mitogenomes. All protein-coding genes (PCGs) are initiated by ATN codons, other than cox1, which is initiated by CGA. Three of the 13 PCGs had an incomplete termination codon, T or TA, while the others terminated with TAA. The relative synonymous codon usage of the 13 protein-coding genes (PCGs) was consistent with those of published lepidopteran sequences. All tRNA genes had typical clover-leaf secondary structures, except for the tRNASer(AGN), in which the dihydrouridine (DHU) arm could not form a stable stem-loop structure. The A + T-rich region of 325 bp had several distinctive features, including the motif ‘ATAGA’ followed by an 18 bp poly-T stretch, a microsatellite-like (AT)7 element, and an 11-bp poly-A present immediately upstream of tRNAMet. Relationships among 32 insect species were determined using Maximum Likelihood (ML), Neighbor Joining (NJ) and Bayesian Inference (BI) phylogenetic methods. These analyses confirm that L. salicis belongs to the Lymantriidae; and that Lymantriidae is a member of Noctuoidea, and is a sister taxon to Erebidae, Nolidae and Noctuidae, most closely related to Erebidae.


Zootaxa ◽  
2020 ◽  
Vol 4747 (3) ◽  
pp. 547-561
Author(s):  
QING ZHAO ◽  
GERASIMOS CASSIS ◽  
LING ZHAO ◽  
YIFAN HE ◽  
HUFANG ZHANG ◽  
...  

Zicrona caerulea (Linnaeus, 1758) is a cosmopolitan stink bug species, which belongs to the predatory subfamily Asopinae. In this study, the complete mitochondrial genome of Zicrona caerulea from Shanxi, China was sequenced for the first time, using next generation sequencing. The mitogenome was found to be 15,479 bp in length. It contained 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region. This research revealed an overall A+T content of 77.14%. All tRNA genes had a clover-leaf structure except for trnS1, which lacks a dihydrouridine (DHU) arm; and for trnV, the DHU arm forms a simple loop. The lengths of rrnS and rrnL were 797 bp and 1,285 bp, respectively. Because of a shortage in tandem repeats, the A+T-rich region was 644 bp in length. Phylogenetic relationships based on these mitogenomes, using Bayesian inference and Maximum likelihood methods, showed that Zicrona caerulea belongs to Asopinae. The monophyly of families of the Pentatomoidea is supported, albeit limited taxon sampling. 


2009 ◽  
Vol 23 (5) ◽  
pp. 445 ◽  
Author(s):  
Lynn Swafford ◽  
Jason E. Bond

Millipedes of the family Xystodesmidae (Polydesmida) are often host to several symbiotic mite species, but very little work has been done to identify these acarines or to understand their relationship to the millipedes. In an attempt to better understand these associations, mites found on xystodesmid millipedes, a group for which a species phylogeny has been proposed, were collected in the Appalachian Mountains of Kentucky, Virginia, Tennessee and North Carolina. Mites in the genera Stylochyrus Canestrini & Canestrini, 1882 (Mesostigmata: Ologamasidae) and Schwiebea Oudemans, 1916 (Sarcoptiformes: Acaridae) were prevalent among millipedes in the genera Apheloria Chamberlin, 1921, Appalachioria Marek & Bond, 2006, Boraria Chamberlin, 1943, Brachoria Chamberlin, 1939, Dixioria Chamberlin, 1947, Nannaria Chamberlin, 1918, Pleuroloma Rafinesque, 1820, Prionogonus Shelley, 1982, Rudiloria Causey, 1955 and Sigmoria Chamberlin, 1939. Of the mite taxa collected, the species Stylochyrus rarior (Berlese, 1916) was found on the greatest number of sampled millipede taxa. To enhance future coevolutionary studies of xystodesmid millipedes and their mite symbionts, the complete mitochondrial genome of S. rarior associated with the millipede genus Apheloria (Polydesmida: Xystodesmidae) was sequenced. The genome is 14 899 nucleotides in length, has all the typical genes of an arthropod mitochondrion, differs in gene arrangement from that of the ancestral arthropod, and has a gene order that is unique among mites and ticks. The major difference in S. rarior is the placement of the protein-coding gene nad1, which is positioned between the rRNA gene 12S and the protein-coding gene nad2 (tRNA genes and non-coding regions excluded). There are also two non-coding control regions within this mitochondrial genome.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1234
Author(s):  
Busu Li ◽  
Huan Wang ◽  
Long Yang ◽  
Shufang Liu ◽  
Zhimeng Zhuang

Pseudocaranx dentex (white trevally) which belongs to the Carangidae family, is an important commercial fishery and aquaculture resource in Asia. However, its evolution and population genetics have received little attention which was limited by the mitogenome information absence. Here, we sequenced and annotated the complete mitochondrial genome of P. dentex which was 16,569 bp in length, containing twenty-two tRNAs (transfer RNAs), thirteen PCGs (protein-coding genes), two rRNAs (ribosomal RNAs), and one non-coding region with conservative gene arrangement. The Ka/Ks ratio analysis among Carangidae fishes indicated the PCGs were suffering purify selection and the values were related to the taxonomic status and further influenced by their living habits. Phylogenetic analysis based on the PCGs sequences of mitogenomes among 36 species presented three major clades in Carangidae. According to the phylogenetic tree, we further analyzed the taxonomic confusion of Carangoides equula which was on the same branch with P. dentex but a different branch with Carangoides spp. We inferred Kaiwarinus equula should be the accepted name and belong to the independent Kaiwarinus genus which was the sister genus of Pseudocaranx. This work provides mitochondrial genetic information and verifies the taxonomic status of P. dentex, and further helps to recognize the phylogenetic relationship and evolutionary history of Carangidae.


2018 ◽  
Author(s):  
Shantanu Kundu ◽  
Vikas Kumar ◽  
Kaomud Tyagi ◽  
Rajasree Chakraborty ◽  
Iftikar Rahaman ◽  
...  

Complete mitochondrial genomes of Indian tent turtle, Pangshura tentoria was sequenced and annotated as 16,657 bp in length. This first assembly was encoded by 37 genes: 13 protein coding genes (PCGs), 22 transfer RNA (tRNAs), two ribosomal RNA (rRNAs) as similar to the typical vertebrate mitochondrial gene arrangement. The complete mitogenome has a base composition of A (33.30%), G (13.54%), C (27%), and T (26.13%). Most of the genes were encoded on major strand, except for the eight tRNAs and one PCG (nad6). Almost all PCGs were starting with an ATG initiation codon, except for cytochrome oxidase subunit 1 (cox1) with ‘GTG’ and NADH dehydrogenase subunit 5 (nad5) with ‘ATA’. The typical termination codons, ‘TAA’ and ‘AGA’ has been observed in NADH dehydrogenase subunit 4l (nad4l) and NADH dehydrogenase subunit 6 (nad6) respectively; and others were used incomplete stop codons. The Relative Synonymous Codon Usage (RSCU) analysis revealed the maximum abundance of Alanine, Isoleucine, Leucine, and Threonine in P. tentoria. Codon distribution per thousand codon (CDsPT) values for all the amino acids showed the maximum values were present for Leucine in all geoemydid turtles. Further, the PCGs showed non-synonymous (Ka)/synonymous (Ks) values were <1 that indicated a strong negative selection among the studied species. The tRNAs were folded into classic clover-leaf secondary structures, except for trnS (GCT), lacking of the conventional DHU arm or stem. Further, the 10 tRNAs showed G-T mismatches and forming weak bonds. In the control region (CR) of P. tentoria, a single tandem repeat of eight base pairs (TTCTCTTT) was resulted with two copy numbers. The comparative study of CR with other geoemydid turtles revealed the numbers of tandem repeats were frequent in the 3´ end and structural characteristic were species-specific. The Maximum Likelihood (ML) phylogeny showed 32 geoemydid turtles were clustered distinctly with high bootstrap support and congruent with the previous phylogenetic hypothesis. Further, the representative mitogenome sequences of other family/suborder were depicted discrete clades in the ML tree. The study argued the complete mitochondrial genome sequence of P. tentoria and comparative mitochondriomics of geoemydid turtles would be useful for further phylogenetic reconciliation and evolutionary research.


Author(s):  
Shujing Liu ◽  
Lili Fu ◽  
Jihua Zhou ◽  
Jizhou Lv ◽  
Zhongyang Tan ◽  
...  

Anderson’s White-bellied Rat, Niviventer andersoni (Thomas, 1911) (Muridae, Niviventer) is an species endemic to China. In the present study, we have sequenced the first complete mitochondrial genome of N. andersoni using next-generation sequencing. The 16,291 bp mitochondrial genome consists of 22 transfer RNA genes, 13 protein-coding genes (PCGs), two ribosomal RNA genes, and one non-coding control region (D-Loop). Phylogenetic analyses of the nucleotide sequences of all 13 PCGs, PCGs minus ND6 and the entire mitogenome sequence except for the D-loop, produce nearly identical, well-resolved topologies. Our results support that N. andersoni clustered with N. excelsior and form a sister group with N. confucianus, and they statistically reject the hypothesis from one cytochrome b (cytb) gene tree that N. confucianus is sister to N. fulvescens. Our research may be helpful to further reconsideration of clearer taxonomy and improve our understanding of mitogenomic evolution in the genus Niviventer.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 6
Author(s):  
Jean-Marc Chavatte ◽  
Sophie Octavia

Dermacentor (Indocentor) auratus Supino, 1897 is a prominent ixodid vector of numerous pathogens of public health and veterinary importance. Using long-range PCR of two overlapping regions sequenced on an Illumina MiSeq machine, the complete mitochondrial genome of D. auratus is reported here. The resulting contigs were able to be assembled into a complete and circularised genome which had the general organisation of the mitochondrial genomes of the Metastriates. It had a total length of 14,766 bp and contained 37 genes, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes, as well as 2 non-coding control regions and 3 tick-boxes. The phylogenetic analysis on the whole mitogenome confirmed the position of D. auratus within the Dermacentor clade.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7031 ◽  
Author(s):  
Thanh Hoa Le ◽  
Khue Thi Nguyen ◽  
Nga Thi Bich Nguyen ◽  
Huong Thi Thanh Doan ◽  
Takeshi Agatsuma ◽  
...  

We present the complete mitochondrial genome of Paragonimus ohirai Miyazaki, 1939 and compare its features with those of previously reported mitochondrial genomes of the pathogenic lung-fluke, Paragonimus westermani, and other members of the genus. The circular mitochondrial DNA molecule of the single fully sequenced individual of P. ohirai was 14,818 bp in length, containing 12 protein-coding, two ribosomal RNA and 22 transfer RNA genes. As is common among trematodes, an atp8 gene was absent from the mitogenome of P. ohirai and the 5′ end of nad4 overlapped with the 3′ end of nad4L by 40 bp. Paragonimusohirai and four forms/strains of P. westermani from South Korea and India, exhibited remarkably different base compositions and hence codon usage in protein-coding genes. In the fully sequenced P. ohirai individual, the non-coding region started with two long identical repeats (292 bp each), separated by tRNAGlu. These were followed by an array of six short tandem repeats (STR), 117 bp each. Numbers of the short tandem repeats varied among P. ohirai individuals. A phylogenetic tree inferred from concatenated mitochondrial protein sequences of 50 strains encompassing 42 species of trematodes belonging to 14 families identified a monophyletic Paragonimidae in the class Trematoda. Characterization of additional mitogenomes in the genus Paragonimus will be useful for biomedical studies and development of molecular tools and mitochondrial markers for diagnostic, identification, hybridization and phylogenetic/epidemiological/evolutionary studies.


2018 ◽  
Author(s):  
Shantanu Kundu ◽  
Vikas Kumar ◽  
Kaomud Tyagi ◽  
Rajasree Chakraborty ◽  
Iftikar Rahaman ◽  
...  

Complete mitochondrial genomes of Indian tent turtle, Pangshura tentoria was sequenced and annotated as 16,657 bp in length. This first assembly was encoded by 37 genes: 13 protein coding genes (PCGs), 22 transfer RNA (tRNAs), two ribosomal RNA (rRNAs) as similar to the typical vertebrate mitochondrial gene arrangement. The complete mitogenome has a base composition of A (33.30%), G (13.54%), C (27%), and T (26.13%). Most of the genes were encoded on major strand, except for the eight tRNAs and one PCG (nad6). Almost all PCGs were starting with an ATG initiation codon, except for cytochrome oxidase subunit 1 (cox1) with ‘GTG’ and NADH dehydrogenase subunit 5 (nad5) with ‘ATA’. The typical termination codons, ‘TAA’ and ‘AGA’ has been observed in NADH dehydrogenase subunit 4l (nad4l) and NADH dehydrogenase subunit 6 (nad6) respectively; and others were used incomplete stop codons. The Relative Synonymous Codon Usage (RSCU) analysis revealed the maximum abundance of Alanine, Isoleucine, Leucine, and Threonine in P. tentoria. Codon distribution per thousand codon (CDsPT) values for all the amino acids showed the maximum values were present for Leucine in all geoemydid turtles. Further, the PCGs showed non-synonymous (Ka)/synonymous (Ks) values were <1 that indicated a strong negative selection among the studied species. The tRNAs were folded into classic clover-leaf secondary structures, except for trnS (GCT), lacking of the conventional DHU arm or stem. Further, the 10 tRNAs showed G-T mismatches and forming weak bonds. In the control region (CR) of P. tentoria, a single tandem repeat of eight base pairs (TTCTCTTT) was resulted with two copy numbers. The comparative study of CR with other geoemydid turtles revealed the numbers of tandem repeats were frequent in the 3´ end and structural characteristic were species-specific. The Maximum Likelihood (ML) phylogeny showed 32 geoemydid turtles were clustered distinctly with high bootstrap support and congruent with the previous phylogenetic hypothesis. Further, the representative mitogenome sequences of other family/suborder were depicted discrete clades in the ML tree. The study argued the complete mitochondrial genome sequence of P. tentoria and comparative mitochondriomics of geoemydid turtles would be useful for further phylogenetic reconciliation and evolutionary research.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 724 ◽  
Author(s):  
Xiaolei Yu ◽  
Wei Tan ◽  
Huanyu Zhang ◽  
Weiling Jiang ◽  
Han Gao ◽  
...  

In this study, we report the complete mitochondrial genome of Harpalus sinicus (occasionally named as the Chinese ground beetle) which is the first mitochondrial genome for Harpalus. The mitogenome is 16,521 bp in length, comprising 37 genes, and a control region. The A + T content of the mitogenome is as high as 80.6%. A mitochondrial origins of light-strand replication (OL)-like region is found firstly in the insect mitogenome, which can form a stem-loop hairpin structure. Thirteen protein-coding genes (PCGs) share high homology, and all of them are under purifying selection. All tRNA genes (tRNAs) can be folded into the classic cloverleaf secondary structures except tRNA-Ser (GCU), which lacks a dihydrouridine (DHU) stem. The secondary structure of two ribosomal RNA genes (rRNAs) is predicted based on previous insect models. Twelve types of tandem repeats and two stem-loop structures are detected in the control region, and two stem-loop structures may be involved in the initiation of replication and transcription. Additionally, phylogenetic analyses based on mitogenomes suggest that Harpalus is an independent lineage in Carabidae, and is closely related to four genera (Abax, Amara, Stomis, and Pterostichus). In general, this study provides meaningful genetic information for Harpalus sinicus and new insights into the phylogenetic relationships within the Carabidae.


Sign in / Sign up

Export Citation Format

Share Document