scholarly journals Assessing taxonomic metagenome profilers with OPAL

2018 ◽  
Author(s):  
Fernando Meyer ◽  
Andreas Bremges ◽  
Peter Belmann ◽  
Stefan Janssen ◽  
Alice C. McHardy ◽  
...  

AbstractTaxonomic metagenome profilers predict the presence and relative abundance of microorganisms from shotgun sequence samples of DNA isolated directly from a microbial community. Over the past years, there has been an explosive growth of software and algorithms for this task, resulting in a need for more systematic comparisons of these methods based on relevant performance criteria. Here, we present OPAL, a software package implementing commonly used performance metrics, including those of the first challenge of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI), together with convenient visualizations. In addition, OPAL implements diversity metrics from microbial ecology, as well as run time and memory efficiency measurements. By allowing users to customize the relative importance of metrics, OPAL facilitates in-depth performance comparisons, as well as the development of new methods and data analysis workflows. To demonstrate the application, we compared seven profilers on benchmark datasets of the first and second CAMI challenges using all metrics and performance measurements available in OPAL. The software is implemented in Python 3 and available under the Apache 2.0 license on GitHub (https://github.com/CAMI-challenge/OPAL).Author summaryThere are many computational approaches for inferring the presence and relative abundance of taxa (i.e. taxonomic profiling) from shotgun metagenome samples of microbial communities, making systematic performance evaluations a very important task. However, there has yet to be introduced a computational framework in which profiler performances can be compared. This delays method development and applied studies, as researchers need to implement their own custom evaluation frameworks. Here, we present OPAL, a software package that facilitates standardized comparisons of taxonomic metagenome profilers. It implements a variety of performance metrics frequently employed in microbiome research, including runtime and memory usage, and generates comparison reports and visualizations. OPAL thus facilitates and accelerates benchmarking of taxonomic profiling techniques on ground truth data. This enables researchers to arrive at informed decisions about which computational techniques to use for specific datasets and research questions.

2021 ◽  
pp. 151-161
Author(s):  
Dominik Filipiak ◽  
Anna Fensel ◽  
Agata Filipowska

Knowledge graphs are used as a source of prior knowledge in numerous computer vision tasks. However, such an approach requires to have a mapping between ground truth data labels and the target knowledge graph. We linked the ILSVRC 2012 dataset (often simply referred to as ImageNet) labels to Wikidata entities. This enables using rich knowledge graph structure and contextual information for several computer vision tasks, traditionally benchmarked with ImageNet and its variations. For instance, in few-shot learning classification scenarios with neural networks, this mapping can be leveraged for weight initialisation, which can improve the final performance metrics value. We mapped all 1000 ImageNet labels – 461 were already directly linked with the exact match property (P2888), 467 have exact match candidates, and 72 cannot be matched directly. For these 72 labels, we discuss different problem categories stemming from the inability of finding an exact match. Semantically close non-exact match candidates are presented as well. The mapping is publicly available athttps://github.com/DominikFilipiak/imagenet-to-wikidata-mapping.


2021 ◽  
Vol 13 (13) ◽  
pp. 2619
Author(s):  
Joao Fonseca ◽  
Georgios Douzas ◽  
Fernando Bacao

In remote sensing, Active Learning (AL) has become an important technique to collect informative ground truth data ``on-demand'' for supervised classification tasks. Despite its effectiveness, it is still significantly reliant on user interaction, which makes it both expensive and time consuming to implement. Most of the current literature focuses on the optimization of AL by modifying the selection criteria and the classifiers used. Although improvements in these areas will result in more effective data collection, the use of artificial data sources to reduce human--computer interaction remains unexplored. In this paper, we introduce a new component to the typical AL framework, the data generator, a source of artificial data to reduce the amount of user-labeled data required in AL. The implementation of the proposed AL framework is done using Geometric SMOTE as the data generator. We compare the new AL framework to the original one using similar acquisition functions and classifiers over three AL-specific performance metrics in seven benchmark datasets. We show that this modification of the AL framework significantly reduces cost and time requirements for a successful AL implementation in all of the datasets used in the experiment.


2020 ◽  
pp. 131
Author(s):  
D.A. Vélez-Alvarado ◽  
J. Álvarez-Mozos

<p class="p1">Management practices adopted in protected natural areas often ignore the relevance of the territory surrounding the actual protected land (buffer area). These areas can be the source of impacts that threaten the protected ecosystems. This paper reports a case study where a time series of Sentinel-1 imagery was used to classify the land-use/land-cover and to evaluate its change between 2015 and 2018 in the buffer area around the Manglares Churute Ecological Reserve (REMCh) in Ecuador. Sentinel-1 scenes were processed and ground-truth data were collected consisting of samples of the main land-use/land-cover classes in the region. Then, a Random Forests (RF) classification algorithm was built and optimized, following a five-fold cross validation scheme using the training dataset (70% of the ground truth). The remaining 30% was used for validation, achieving an Overall Accuracy of 84%, a Kappa coefficient of 0.8 and successful class performance metrics for the main crops and land use classes. Results were poorer for heterogeneous and minor classes, nevertheless the performance of the classification was deemed sufficient for the targeted change analysis. Between 2015 and 2018, an increase in the area covered by intensive land uses was evidenced, such as shrimp farms and sugarcane, which replaced traditional crops (mainly rice and banana). Even though such changes only affected the land area around the natural reserve, they might affect its water quality due to the use of fertilizers and pesticides that easily. Therefore, it is recommended that these buffer areas around natural protected areas be taken into account when designing adequate environmental protection measures and polices.</p>


Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 127 ◽  
Author(s):  
Lucas Pereira

Datasets are important for researchers to build models and test how these perform, as well as to reproduce research experiments from others. This data paper presents the NILM Performance Evaluation dataset (NILMPEds), which is aimed primarily at research reproducibility in the field of Non-intrusive load monitoring. This initial release of NILMPEds is dedicated to event detection algorithms and is comprised of ground-truth data for four test datasets, the specification of 47,950 event detection models, the power events returned by each model in the four test datasets, and the performance of each individual model according to 31 performance metrics.


AI ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 444-463
Author(s):  
Daniel Weber ◽  
Clemens Gühmann ◽  
Thomas Seel

Inertial-sensor-based attitude estimation is a crucial technology in various applications, from human motion tracking to autonomous aerial and ground vehicles. Application scenarios differ in characteristics of the performed motion, presence of disturbances, and environmental conditions. Since state-of-the-art attitude estimators do not generalize well over these characteristics, their parameters must be tuned for the individual motion characteristics and circumstances. We propose RIANN, a ready-to-use, neural network-based, parameter-free, real-time-capable inertial attitude estimator, which generalizes well across different motion dynamics, environments, and sampling rates, without the need for application-specific adaptations. We gather six publicly available datasets of which we exploit two datasets for the method development and the training, and we use four datasets for evaluation of the trained estimator in three different test scenarios with varying practical relevance. Results show that RIANN outperforms state-of-the-art attitude estimation filters in the sense that it generalizes much better across a variety of motions and conditions in different applications, with different sensor hardware and different sampling frequencies. This is true even if the filters are tuned on each individual test dataset, whereas RIANN was trained on completely separate data and has never seen any of these test datasets. RIANN can be applied directly without adaptations or training and is therefore expected to enable plug-and-play solutions in numerous applications, especially when accuracy is crucial but no ground-truth data is available for tuning or when motion and disturbance characteristics are uncertain. We made RIANN publicly available.


2020 ◽  
Author(s):  
Jingbai Li ◽  
Patrick Reiser ◽  
André Eberhard ◽  
Pascal Friederich ◽  
Steven Lopez

<p>Photochemical reactions are being increasingly used to construct complex molecular architectures with mild and straightforward reaction conditions. Computational techniques are increasingly important to understand the reactivities and chemoselectivities of photochemical isomerization reactions because they offer molecular bonding information along the excited-state(s) of photodynamics. These photodynamics simulations are resource-intensive and are typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which places them outside possible computational studies. Westermeyr <i>et al.</i> demonstrated that a machine learning approach could significantly lengthen photodynamics simulation times for a model system, methylenimmonium cation (CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>).</p><p>We have developed a Python-based code, Python Rapid Artificial Intelligence <i>Ab Initio</i> Molecular Dynamics (PyRAI<sup>2</sup>MD), to accomplish the unprecedented 10 ns <i>cis-trans</i> photodynamics of <i>trans</i>-hexafluoro-2-butene (CF<sub>3</sub>–CH=CH–CF<sub>3</sub>) in 3.5 days. The same simulation would take approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an innovative scheme combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive sampling to generate an informative and data-efficient training set with 6,232 data points. Our neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 trajectories reproduced the S<sub>1</sub> half-life (60.5 fs), the photochemical product ratio (<i>trans</i>: <i>cis</i> = 2.3: 1), and autonomously discovered a pathway towards a carbene. The neural networks have also shown the capability of generalizing the full potential energy surface with chemically incomplete data (<i>trans</i> → <i>cis</i> but not <i>cis</i> → <i>trans</i> pathways) that may offer future automated photochemical reaction discoveries.</p>


2021 ◽  
Vol 13 (10) ◽  
pp. 1966
Author(s):  
Christopher W Smith ◽  
Santosh K Panda ◽  
Uma S Bhatt ◽  
Franz J Meyer ◽  
Anushree Badola ◽  
...  

In recent years, there have been rapid improvements in both remote sensing methods and satellite image availability that have the potential to massively improve burn severity assessments of the Alaskan boreal forest. In this study, we utilized recent pre- and post-fire Sentinel-2 satellite imagery of the 2019 Nugget Creek and Shovel Creek burn scars located in Interior Alaska to both assess burn severity across the burn scars and test the effectiveness of several remote sensing methods for generating accurate map products: Normalized Difference Vegetation Index (NDVI), Normalized Burn Ratio (NBR), and Random Forest (RF) and Support Vector Machine (SVM) supervised classification. We used 52 Composite Burn Index (CBI) plots from the Shovel Creek burn scar and 28 from the Nugget Creek burn scar for training classifiers and product validation. For the Shovel Creek burn scar, the RF and SVM machine learning (ML) classification methods outperformed the traditional spectral indices that use linear regression to separate burn severity classes (RF and SVM accuracy, 83.33%, versus NBR accuracy, 73.08%). However, for the Nugget Creek burn scar, the NDVI product (accuracy: 96%) outperformed the other indices and ML classifiers. In this study, we demonstrated that when sufficient ground truth data is available, the ML classifiers can be very effective for reliable mapping of burn severity in the Alaskan boreal forest. Since the performance of ML classifiers are dependent on the quantity of ground truth data, when sufficient ground truth data is available, the ML classification methods would be better at assessing burn severity, whereas with limited ground truth data the traditional spectral indices would be better suited. We also looked at the relationship between burn severity, fuel type, and topography (aspect and slope) and found that the relationship is site-dependent.


2020 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Wen-Hao Su ◽  
Jiajing Zhang ◽  
Ce Yang ◽  
Rae Page ◽  
Tamas Szinyei ◽  
...  

In many regions of the world, wheat is vulnerable to severe yield and quality losses from the fungus disease of Fusarium head blight (FHB). The development of resistant cultivars is one means of ameliorating the devastating effects of this disease, but the breeding process requires the evaluation of hundreds of lines each year for reaction to the disease. These field evaluations are laborious, expensive, time-consuming, and are prone to rater error. A phenotyping cart that can quickly capture images of the spikes of wheat lines and their level of FHB infection would greatly benefit wheat breeding programs. In this study, mask region convolutional neural network (Mask-RCNN) allowed for reliable identification of the symptom location and the disease severity of wheat spikes. Within a wheat line planted in the field, color images of individual wheat spikes and their corresponding diseased areas were labeled and segmented into sub-images. Images with annotated spikes and sub-images of individual spikes with labeled diseased areas were used as ground truth data to train Mask-RCNN models for automatic image segmentation of wheat spikes and FHB diseased areas, respectively. The feature pyramid network (FPN) based on ResNet-101 network was used as the backbone of Mask-RCNN for constructing the feature pyramid and extracting features. After generating mask images of wheat spikes from full-size images, Mask-RCNN was performed to predict diseased areas on each individual spike. This protocol enabled the rapid recognition of wheat spikes and diseased areas with the detection rates of 77.76% and 98.81%, respectively. The prediction accuracy of 77.19% was achieved by calculating the ratio of the wheat FHB severity value of prediction over ground truth. This study demonstrates the feasibility of rapidly determining levels of FHB in wheat spikes, which will greatly facilitate the breeding of resistant cultivars.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4050
Author(s):  
Dejan Pavlovic ◽  
Christopher Davison ◽  
Andrew Hamilton ◽  
Oskar Marko ◽  
Robert Atkinson ◽  
...  

Monitoring cattle behaviour is core to the early detection of health and welfare issues and to optimise the fertility of large herds. Accelerometer-based sensor systems that provide activity profiles are now used extensively on commercial farms and have evolved to identify behaviours such as the time spent ruminating and eating at an individual animal level. Acquiring this information at scale is central to informing on-farm management decisions. The paper presents the development of a Convolutional Neural Network (CNN) that classifies cattle behavioural states (`rumination’, `eating’ and `other’) using data generated from neck-mounted accelerometer collars. During three farm trials in the United Kingdom (Easter Howgate Farm, Edinburgh, UK), 18 steers were monitored to provide raw acceleration measurements, with ground truth data provided by muzzle-mounted pressure sensor halters. A range of neural network architectures are explored and rigorous hyper-parameter searches are performed to optimise the network. The computational complexity and memory footprint of CNN models are not readily compatible with deployment on low-power processors which are both memory and energy constrained. Thus, progressive reductions of the CNN were executed with minimal loss of performance in order to address the practical implementation challenges, defining the trade-off between model performance versus computation complexity and memory footprint to permit deployment on micro-controller architectures. The proposed methodology achieves a compression of 14.30 compared to the unpruned architecture but is nevertheless able to accurately classify cattle behaviours with an overall F1 score of 0.82 for both FP32 and FP16 precision while achieving a reasonable battery lifetime in excess of 5.7 years.


2021 ◽  
pp. 0021955X2110210
Author(s):  
Alejandro E Rodríguez-Sánchez ◽  
Héctor Plascencia-Mora

Traditional modeling of mechanical energy absorption due to compressive loadings in expanded polystyrene foams involves mathematical descriptions that are derived from stress/strain continuum mechanics models. Nevertheless, most of those models are either constrained using the strain as the only variable to work at large deformation regimes and usually neglect important parameters for energy absorption properties such as the material density or the rate of the applying load. This work presents a neural-network-based approach that produces models that are capable to map the compressive stress response and energy absorption parameters of an expanded polystyrene foam by considering its deformation, compressive loading rates, and different densities. The models are trained with ground-truth data obtained in compressive tests. Two methods to select neural network architectures are also presented, one of which is based on a Design of Experiments strategy. The results show that it is possible to obtain a single artificial neural networks model that can abstract stress and energy absorption solution spaces for the conditions studied in the material. Additionally, such a model is compared with a phenomenological model, and the results show than the neural network model outperforms it in terms of prediction capabilities, since errors around 2% of experimental data were obtained. In this sense, it is demonstrated that by following the presented approach is possible to obtain a model capable to reproduce compressive polystyrene foam stress/strain data, and consequently, to simulate its energy absorption parameters.


Sign in / Sign up

Export Citation Format

Share Document