scholarly journals On the Depth of Deep Learning Models for Splice Site Identification

2018 ◽  
Author(s):  
Reem Elsousy ◽  
Nagarajan Kathiresan ◽  
Sabri Boughorbel

AbstractThe success of deep learning has been shown in various fields including computer vision, speech recognition, natural language processing and bioinformatics. The advance of Deep Learning in Computer Vision has been an important source of inspiration for other research fields. The objective of this work is to adapt known deep learning models borrowed from computer vision such as VGGNet, Resnet and AlexNet for the classification of biological sequences. In particular, we are interested by the task of splice site identification based on raw DNA sequences. We focus on the role of model architecture depth on model training and classification performance.We show that deep learning models outperform traditional classification methods (SVM, Random Forests, and Logistic Regression) for large training sets of raw DNA sequences. Three model families are analyzed in this work namely VGGNet, AlexNet and ResNet. Three depth levels are defined for each model family. The models are benchmarked using the following metrics: Area Under ROC curve (AUC), Number of model parameters, number of floating operations. Our extensive experimental evaluation show that shallow architectures have an overall better performance than deep models. We introduced a shallow version of ResNet, named S-ResNet. We show that it gives a good trade-off between model complexity and classification performance.Author summaryDeep Learning has been widely applied to various fields in research and industry. It has been also succesfully applied to genomics and in particular to splice site identification. We are interested in the use of advanced neural networks borrowed from computer vision. We explored well-known models and their usability for the problem of splice site identification from raw sequences. Our extensive experimental analysis shows that shallow models outperform deep models. We introduce a new model called S-ResNet, which gives a good trade-off between computational complexity and classification accuracy.

Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2021 ◽  
Vol 11 (9) ◽  
pp. 4233
Author(s):  
Biprodip Pal ◽  
Debashis Gupta ◽  
Md. Rashed-Al-Mahfuz ◽  
Salem A. Alyami ◽  
Mohammad Ali Moni

The COVID-19 pandemic requires the rapid isolation of infected patients. Thus, high-sensitivity radiology images could be a key technique to diagnose patients besides the polymerase chain reaction approach. Deep learning algorithms are proposed in several studies to detect COVID-19 symptoms due to the success in chest radiography image classification, cost efficiency, lack of expert radiologists, and the need for faster processing in the pandemic area. Most of the promising algorithms proposed in different studies are based on pre-trained deep learning models. Such open-source models and lack of variation in the radiology image-capturing environment make the diagnosis system vulnerable to adversarial attacks such as fast gradient sign method (FGSM) attack. This study therefore explored the potential vulnerability of pre-trained convolutional neural network algorithms to the FGSM attack in terms of two frequently used models, VGG16 and Inception-v3. Firstly, we developed two transfer learning models for X-ray and CT image-based COVID-19 classification and analyzed the performance extensively in terms of accuracy, precision, recall, and AUC. Secondly, our study illustrates that misclassification can occur with a very minor perturbation magnitude, such as 0.009 and 0.003 for the FGSM attack in these models for X-ray and CT images, respectively, without any effect on the visual perceptibility of the perturbation. In addition, we demonstrated that successful FGSM attack can decrease the classification performance to 16.67% and 55.56% for X-ray images, as well as 36% and 40% in the case of CT images for VGG16 and Inception-v3, respectively, without any human-recognizable perturbation effects in the adversarial images. Finally, we analyzed that correct class probability of any test image which is supposed to be 1, can drop for both considered models and with increased perturbation; it can drop to 0.24 and 0.17 for the VGG16 model in cases of X-ray and CT images, respectively. Thus, despite the need for data sharing and automated diagnosis, practical deployment of such program requires more robustness.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2020 ◽  
Author(s):  
Yupeng Wang ◽  
Rosario B. Jaime-Lara ◽  
Abhrarup Roy ◽  
Ying Sun ◽  
Xinyue Liu ◽  
...  

AbstractWe propose SeqEnhDL, a deep learning framework for classifying cell type-specific enhancers based on sequence features. DNA sequences of “strong enhancer” chromatin states in nine cell types from the ENCODE project were retrieved to build and test enhancer classifiers. For any DNA sequence, sequential k-mer (k=5, 7, 9 and 11) fold changes relative to randomly selected non-coding sequences were used as features for deep learning models. Three deep learning models were implemented, including multi-layer perceptron (MLP), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). All models in SeqEnhDL outperform state-of-the-art enhancer classifiers including gkm-SVM and DanQ, with regard to distinguishing cell type-specific enhancers from randomly selected non-coding sequences. Moreover, SeqEnhDL is able to directly discriminate enhancers from different cell types, which has not been achieved by other enhancer classifiers. Our analysis suggests that both enhancers and their tissue-specificity can be accurately identified according to their sequence features. SeqEnhDL is publicly available at https://github.com/wyp1125/SeqEnhDL.


2022 ◽  
Author(s):  
Maede Maftouni ◽  
Bo Shen ◽  
Andrew Chung Chee Law ◽  
Niloofar Ayoobi Yazdi ◽  
Zhenyu Kong

<p>The global extent of COVID-19 mutations and the consequent depletion of hospital resources highlighted the necessity of effective computer-assisted medical diagnosis. COVID-19 detection mediated by deep learning models can help diagnose this highly contagious disease and lower infectivity and mortality rates. Computed tomography (CT) is the preferred imaging modality for building automatic COVID-19 screening and diagnosis models. It is well-known that the training set size significantly impacts the performance and generalization of deep learning models. However, accessing a large dataset of CT scan images from an emerging disease like COVID-19 is challenging. Therefore, data efficiency becomes a significant factor in choosing a learning model. To this end, we present a multi-task learning approach, namely, a mask-guided attention (MGA) classifier, to improve the generalization and data efficiency of COVID-19 classification on lung CT scan images.</p><p>The novelty of this method is compensating for the scarcity of data by employing more supervision with lesion masks, increasing the sensitivity of the model to COVID-19 manifestations, and helping both generalization and classification performance. Our proposed model achieves better overall performance than the single-task baseline and state-of-the-art models, as measured by various popular metrics. In our experiment with different percentages of data from our curated dataset, the classification performance gain from this multi-task learning approach is more significant for the smaller training sizes. Furthermore, experimental results demonstrate that our method enhances the focus on the lesions, as witnessed by both</p><p>attention and attribution maps, resulting in a more interpretable model.</p>


2020 ◽  
Author(s):  
Shabir Moosa ◽  
Abbes Amira ◽  
Sabri Boughorbel

Abstract Background: The data explosion caused by unprecedented advancements in the field of genomics is constantly challenging the conventional methods used in the interpretation of the human genome. The demand for robust algorithms over the recent years has brought huge success in the field of Deep Learning (DL) in solving many difficult tasks in image, speech and natural language processing by automating the manual process of architecture design. This has been fueled through the development of new DL architectures. Yet genomics possesses unique challenges as we expect DL to provide a super human intelligence that easily interprets a human genome.Methods: We adapted a differential architecture search method for the interpretation of biological sequences and applied it to the splice site recognition task on DNA sequences to discover new high-performance convolutional architectures in an automated manner. The discovered architecture was benchmarked on CPU and multiple GPU architectures in terms of computational time and classification performance.Results: Our experimental evaluation demonstrated that the discovered architecture outperformed fixed baseline architectures for classification of splice sites. The benchmarking experiments of execution time and precision on architecture search and evaluation process showed that they performed better on recently available GPU models.Conclusions: We applied differential architecture search mechanism to perform splice site classification on raw DNA sequences, and discovered new models with better performance than major baseline models. The results have shown a potential of using this automated architecture search mechanism for solving various problems in genomics domain.


2021 ◽  
pp. 27-38
Author(s):  
Rafaela Carvalho ◽  
João Pedrosa ◽  
Tudor Nedelcu

AbstractSkin cancer is one of the most common types of cancer and, with its increasing incidence, accurate early diagnosis is crucial to improve prognosis of patients. In the process of visual inspection, dermatologists follow specific dermoscopic algorithms and identify important features to provide a diagnosis. This process can be automated as such characteristics can be extracted by computer vision techniques. Although deep neural networks can extract useful features from digital images for skin lesion classification, performance can be improved by providing additional information. The extracted pseudo-features can be used as input (multimodal) or output (multi-tasking) to train a robust deep learning model. This work investigates the multimodal and multi-tasking techniques for more efficient training, given the single optimization of several related tasks in the latter, and generation of better diagnosis predictions. Additionally, the role of lesion segmentation is also studied. Results show that multi-tasking improves learning of beneficial features which lead to better predictions, and pseudo-features inspired by the ABCD rule provide readily available helpful information about the skin lesion.


Sign in / Sign up

Export Citation Format

Share Document