scholarly journals Desiccation-induced changes in recombination rate and crossover interference in Drosophila melanogaster: evidence for fitness-dependent plasticity

2018 ◽  
Author(s):  
Dau Dayal Aggarwal ◽  
Sviatoslav R. Rybnikov ◽  
Irit Cohen ◽  
Zeev Frenkel ◽  
Eugenia Rashkovetsky ◽  
...  

ABSTRACTMeiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such a dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.

Genetica ◽  
2019 ◽  
Vol 147 (3-4) ◽  
pp. 291-302 ◽  
Author(s):  
Dau Dayal Aggarwal ◽  
Sviatoslav Rybnikov ◽  
Irit Cohen ◽  
Zeev Frenkel ◽  
Eugenia Rashkovetsky ◽  
...  

1994 ◽  
Vol 7 (2) ◽  
pp. 200-212 ◽  
Author(s):  
J F Sheridan ◽  
C Dobbs ◽  
D Brown ◽  
B Zwilling

The mammalian response to stress involves the release of soluble products from the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Cells of the immune system respond to many of the hormones, neurotransmitters, and neuropeptides through specific receptors. The function of the immune system is critical in the mammalian response to infectious disease. A growing body of evidence identifies stress as a cofactor in infectious disease susceptibility and outcomes. It has been suggested that effects of stress on the immune system may mediate the relationship between stress and infectious disease. This article reviews recent psychoneuroimmunology literature exploring the effects of stress on the pathogenesis of, and immune response to, infectious disease in mammals.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
M.G. MARCHEZAN ◽  
L.A. AVILA ◽  
D. AGOSTINETTO ◽  
C.E. SCHAEDLER ◽  
A.C. LANGARO ◽  
...  

ABSTRACT Herbicide selectivity in paddy rice varies in several aspects, among which are the environmental conditions. The aim of the study was to evaluate the effect of herbicide application and total plant submersion on morphological and biochemical changes in paddy rice. Total chlorophyll and carotenoids, catalase activity, ascorbate peroxidase and superoxide dismutase, total phenolic content, lipid peroxidation and hydrogen peroxide levels were assessed. Leaf samples were collected 24 hours and 7 days after the application of water regimes. The results observed in the first experiment show that cultivars Puitá INTA CL, IRGA 417 and IRGA 422 CL are more tolerant to total submersion. The most sensitive cultivars are IRGA 424, BRS Querência, EPAGRI 108 and BRS Taim. In general, cultivar Puitá INTA CL had lower oxidative damage than BRS Querência when under submersion. To eliminate excess free radicals, BRS Querência had increased activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) than Puitá INTA CL under submersion. Formulations with imazethapyr + imazapic and imazapyr + imazapic caused greater reduction in the total chlorophyll and carotenoid contents at 7 days after the establisment of water regimes (DAT). Therefore, the data show that exposing cultivars to total submersion and herbicides increased oxidative stress as well as induced changes in the activities of antioxidant enzymes.


1984 ◽  
Vol 100 (3) ◽  
pp. 271-275 ◽  
Author(s):  
G. K. Hulse ◽  
G. J. Coleman ◽  
D. L. Copolov ◽  
J. A. Clements

ABSTRACT The aim of this study was twofold: (1) to document changes in levels of immunoreactive β-endorphin (Ir-β-EP) in the hypothalamus, anterior pituitary gland, neurointermediate lobe and plasma during the oestrous cycle of the rat and (2) to investigate stress-induced changes in plasma Ir-β-EP at different stages of the oestrous cycle. Evidence was found that Ir-β-EP levels in the hypothalamus, anterior pituitary gland and plasma are not constant during the oestrous cycle and that the Ir-β-EP response to stress is a function of the phase of the oestrous cycle at which stress is applied. It is suggested that fluctuations in ovarian hormones may influence oestrous Ir-β-EP levels both under normal conditions and after exposure to stress. J. Endocr. (1984) 100, 271–275


2018 ◽  
Vol 36 (2) ◽  
pp. 412-422 ◽  
Author(s):  
Haoxuan Liu ◽  
Calum J Maclean ◽  
Jianzhi Zhang

Abstract Meiotic recombination comprises crossovers and noncrossovers. Recombination, crossover in particular, shuffles mutations and impacts both the level of genetic polymorphism and the speed of adaptation. In many species, the recombination rate varies across the genome with hot and cold spots. The hotspot paradox hypothesis asserts that recombination hotspots are evolutionarily unstable due to self-destruction. However, the genomic landscape of double-strand breaks (DSBs), which initiate recombination, is evolutionarily conserved among divergent yeast species, casting doubt on the hotspot paradox hypothesis. Nonetheless, because only a subset of DSBs are associated with crossovers, the evolutionary conservation of the crossover landscape could differ from that of DSBs. Here, we investigate this possibility by generating a high-resolution recombination map of the budding yeast Saccharomyces paradoxus through whole-genome sequencing of 50 meiotic tetrads and by comparing this recombination map with that of S. cerevisiae. We observe a 40% lower recombination rate in S. paradoxus than in S. cerevisiae. Compared with the DSB landscape, the crossover landscape is even more conserved. Further analyses indicate that the elevated conservation of the crossover landscape is explained by a near-subtelomeric crossover preference in both yeasts, which we find to be attributable at least in part to crossover interference. We conclude that the yeast crossover landscape is highly conserved and that the evolutionary conservation of this landscape can differ from that of the DSB landscape.


2019 ◽  
Vol 53 (6) ◽  
pp. 1801524 ◽  
Author(s):  
Kirsty M. Mair ◽  
Katie Y. Harvey ◽  
Alasdair D. Henry ◽  
Dianne Z. Hillyard ◽  
Margaret Nilsen ◽  
...  

Obesity is a common comorbidity for pulmonary arterial hypertension (PAH). Additionally, oestrogen and its metabolites are risk factors for the development of PAH. Visceral adipose tissue (VAT) is a major site of oestrogen production; however, the influence of obesity-induced changes in oestrogen synthesis and metabolism on the development of PAH is unclear. To address this we investigated the effects of inhibiting oestrogen synthesis and metabolism on the development of pulmonary hypertension in male and female obese mice.We depleted endogenous oestrogen in leptin-deficient (ob/ob) mice with the oestrogen inhibitor anastrozole (ANA) and determined the effects on the development of pulmonary hypertension, plasma oestradiol and urinary 16α-hydroxyestrone (16αOHE1). Oestrogen metabolism through cytochrome P450 1B1 (CYP1B1) was inhibited with 2,2′,4,6′-tetramethoxystilbene (TMS).ob/ob mice spontaneously develop pulmonary hypertension, pulmonary vascular remodelling and increased reactive oxygen species production in the lung; these effects were attenuated by ANA. Oestradiol levels were decreased in obese male mice; however, VAT CYP1B1 and 16αOHE1 levels were increased. TMS also attenuated pulmonary hypertension in male ob/ob mice. Intra-thoracic fat from ob/ob mice and VAT conditioned media produce 16αOHE1 and can contribute to oxidative stress, effects that are attenuated by both ANA and TMS.Obesity can induce pulmonary hypertension and changes in oestrogen metabolism, resulting in increased production of 16αOHE1 from VAT that contributes to oxidative stress. Oestrogen inhibitors are now in clinical trials for PAH. This study has translational consequences as it suggests that oestrogen inhibitors may be especially beneficial in treating obese individuals with PAH.


2017 ◽  
Vol 372 (1736) ◽  
pp. 20160460 ◽  
Author(s):  
Sviatoslav R. Rybnikov ◽  
Zeev M. Frenkel ◽  
Abraham B. Korol

While the evolutionary advantages of non-zero recombination rates have prompted diverse theoretical explanations, the evolution of essential recombination features remains underexplored. We focused on one such feature, the condition dependence of recombination, viewed as the variation in within-generation sensitivity of recombination to external (environment) and/or internal (genotype) conditions. Limited empirical evidence for its existence comes mainly from diploids, whereas theoretical models show that it only easily evolves in haploids. The evolution of condition-dependent recombination can be explained by its advantage for the selected system (indirect effect), or by benefits to modifier alleles, ensuring this strategy regardless of effects on the selected system (direct effect). We considered infinite panmictic populations of diploids exposed to a cyclical two-state environment. Each organism had three selected loci. Examining allele dynamics at a fourth, selectively neutral recombination modifier locus, we frequently observed that a modifier allele conferring condition-dependent recombination between the selected loci displaced the allele conferring the optimal constant recombination rate. Our simulations also confirm the results of theoretical studies showing that condition-dependent recombination cannot evolve in diploids on the basis of direct fitness-dependent effects alone. Therefore, the evolution of condition-dependent recombination in diploids can be driven by indirect effects alone, i.e. by modifier effects on the selected system. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.


2015 ◽  
Vol 26 (25) ◽  
pp. 4618-4630 ◽  
Author(s):  
Bobbiejane Stauffer ◽  
Ted Powers

The yeast vacuole is equivalent to the mammalian lysosome and, in response to diverse physiological and environmental stimuli, undergoes alterations both in size and number. Here we demonstrate that vacuoles fragment in response to stress within the endoplasmic reticulum (ER) caused by chemical or genetic perturbations. We establish that this response does not involve known signaling pathways linked previously to ER stress but instead requires the rapamycin-sensitive TOR Complex 1 (TORC1), a master regulator of cell growth, together with its downstream effectors, Tap42/Sit4 and Sch9. To identify additional factors required for ER stress–induced vacuolar fragmentation, we conducted a high-throughput, genome-wide visual screen for yeast mutants that are refractory to ER stress–induced changes in vacuolar morphology. We identified several genes shown previously to be required for vacuolar fusion and/or fission, validating the utility of this approach. We also identified a number of new components important for fragmentation, including a set of proteins involved in assembly of the V-ATPase. Remarkably, we find that one of these, Vph2, undergoes a change in intracellular localization in response to ER stress and, moreover, in a manner that requires TORC1 activity. Together these results reveal a new role for TORC1 in the regulation of vacuolar behavior.


2017 ◽  
Vol 4 (11) ◽  
pp. 170529 ◽  
Author(s):  
Eynat Dellus-Gur ◽  
Yoav Ram ◽  
Lilach Hadany

Stress-induced mutagenesis is a widely observed phenomenon. Theoretical models have shown that stress-induced mutagenesis can be favoured by natural selection due to the beneficial mutations it generates. These models, however, assumed an error-free regulation of mutation rate in response to stress. Here, we explore the effects of errors in the regulation of mutagenesis on the evolution of stress-induced mutagenesis, and consider the role of cell-to-cell signalling. Using theoretical models, we show (i) that stress-induced mutagenesis can be disadvantageous if errors are common; and (ii) that cell-to-cell signalling can allow stress-induced mutagenesis to be favoured by selection even when error rates are high. We conclude that cell-to-cell signalling can facilitate the evolution of stress-induced mutagenesis in microbes through second-order selection.


Sign in / Sign up

Export Citation Format

Share Document