scholarly journals Real-time non-invasive intracranial state estimation using unscented Kalman filter

2018 ◽  
Author(s):  
Chanki Park ◽  
Seungjun Ryu ◽  
Bonghyun Jung ◽  
Sangpyong Lee ◽  
Changkie Hong ◽  
...  

AbstractIntracranial pressure (ICP) monitoring is desirable as a first-line measure to assist decision-making in cases of increased ICP. Clinically, non-invasive ICP monitoring is also required to avoid infection and hemorrhage in patients. The relationships among the arterial blood pressure (Pa), ICP, cerebral blood flow, and its velocity (QCBFv) measured by transcranial Doppler ultrasound measurement have been reported. However, real-time non-invasive ICP estimation using these modalities is less well documented. Here, we present a novel algorithm for real-time and non-invasive ICP monitoring with QCBFv and Pa, called direct-current (DC)-ICP. This technique is compared with invasive ICP for 11 traumatic-brain-injury patients admitted to Cheju Halla Hospital and Gangnam Severance Hospital from July 2017 to June 2018. The inter-subject correlation coefficient between true and estimate was 0.70. The AUCs of the ROCs for prediction of increased ICP for the DC-ICP methods are 0.816. Thus, QCBFv monitoring can facilitate reliable real-time ICP tracking with our novel DC-ICP algorithm, which can provide valuable information under clinical conditions.

2019 ◽  
Vol 24 (5) ◽  
pp. 509-519 ◽  
Author(s):  
Andrea Fanelli ◽  
Frederick W. Vonberg ◽  
Kerri L. LaRovere ◽  
Brian K. Walsh ◽  
Edward R. Smith ◽  
...  

OBJECTIVEIn the search for a reliable, cooperation-independent, noninvasive alternative to invasive intracranial pressure (ICP) monitoring in children, various approaches have been proposed, but at the present time none are capable of providing fully automated, real-time, calibration-free, continuous and accurate ICP estimates. The authors investigated the feasibility and validity of simultaneously monitored arterial blood pressure (ABP) and middle cerebral artery (MCA) cerebral blood flow velocity (CBFV) waveforms to derive noninvasive ICP (nICP) estimates.METHODSInvasive ICP and ABP recordings were collected from 12 pediatric and young adult patients (aged 2–25 years) undergoing such monitoring as part of routine clinical care. Additionally, simultaneous transcranial Doppler (TCD) ultrasonography–based MCA CBFV waveform measurements were performed at the bedside in dedicated data collection sessions. The ABP and MCA CBFV waveforms were analyzed in the context of a mathematical model, linking them to the cerebral vasculature’s biophysical properties and ICP. The authors developed and automated a waveform preprocessing, signal-quality evaluation, and waveform-synchronization “pipeline” in order to test and objectively validate the algorithm’s performance. To generate one nICP estimate, 60 beats of ABP and MCA CBFV waveform data were analyzed. Moving the 60-beat data window forward by one beat at a time (overlapping data windows) resulted in 39,480 ICP-to-nICP comparisons across a total of 44 data-collection sessions (studies). Moving the 60-beat data window forward by 60 beats at a time (nonoverlapping data windows) resulted in 722 paired ICP-to-nICP comparisons.RESULTSGreater than 80% of all nICP estimates fell within ± 7 mm Hg of the reference measurement. Overall performance in the nonoverlapping data window approach gave a mean error (bias) of 1.0 mm Hg, standard deviation of the error (precision) of 5.1 mm Hg, and root-mean-square error of 5.2 mm Hg. The associated mean and median absolute errors were 4.2 mm Hg and 3.3 mm Hg, respectively. These results were contingent on ensuring adequate ABP and CBFV signal quality and required accurate hydrostatic pressure correction of the measured ABP waveform in relation to the elevation of the external auditory meatus. Notably, the procedure had no failed attempts at data collection, and all patients had adequate TCD data from at least one hemisphere. Last, an analysis of using study-by-study averaged nICP estimates to detect a measured ICP > 15 mm Hg resulted in an area under the receiver operating characteristic curve of 0.83, with a sensitivity of 71% and specificity of 86% for a detection threshold of nICP = 15 mm Hg.CONCLUSIONSThis nICP estimation algorithm, based on ABP and bedside TCD CBFV waveform measurements, performs in a manner comparable to invasive ICP monitoring. These findings open the possibility for rational, point-of-care treatment decisions in pediatric patients with suspected raised ICP undergoing intensive care.


2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
Giovanni Franzo ◽  
Michele Drigo ◽  
Matteo Legnardi ◽  
Laura Grassi ◽  
Maria Luisa Menandro ◽  
...  

Differently from alpha- and betaherpesviruses affecting swine, interest in the recently discovered Suid gammaherpesvirus 3, Suid gammaherpesvirus 4, and Suid gammaherpesvirus 5, also known as porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, and PLHV-3), has largely focused on their role as potential zoonotic agents in cases of xenotransplantation. However, their role as primary pathogens of swine or as co-factors for other lymphotropic infections has essentially been neglected. The present study aims at filling this gap, evaluating the association between PLHVs infection and different clinical conditions and/or porcine circovirus (PCV) co-infection. One hundred seventy-six samples were obtained from different animals located in a high-density pig area of Northern Italy in the period 2017–2020. The presence of PLHVs and PCVs was tested and quantified by specific real-time PCR: PLHVs were widespread among pigs (PLHV-1, PLHV-2, and PLHV-3 prevalence was 28.97%, 10.79%, and 4.54%, respectively) and detected in all considered tissues and clinical conditions. Frequent co-infections were also observed among PLHVs and with PCVs, although a significant association was not detected with the exception of a positive interaction between PLHV-1 and PLHV-3, and a negative one between PLHV-2 and PCV-2. Significantly, no association between PLHVs, alone or in co-infection, emerged with any of the considered clinical signs, their frequency being comparable between healthy and diseased animals. Based on these pieces of evidence and despite their high prevalence, PLHVs’ relevance for the swine industry appears negligible, either as primary pathogens or as predisposing factors for circovirus-induced diseases.


2021 ◽  
Vol 8 (4) ◽  
pp. 54
Author(s):  
Daniele Serrani ◽  
Antonella Volta ◽  
Franco Cingolani ◽  
Luca Pennasilico ◽  
Caterina Di Bella ◽  
...  

Real-time elastosonography (RTE) is a recently described, non-invasive, ultrasonographic technique developed to assess tissue elasticity. The main aim of this study was to investigate the ultrasonographic and elastosonographic appearance of the common calcaneal tendon (CCT) in an ovine model, and to monitor the progression of tendon healing after an experimentally-induced tendinopathy. Sound tendons were initially evaluated (T0) with a caliper and by a single operator with ultrasound. Ultrasonographic and elastosonographic images were then acquired. Subsequently, ultrasound-guided tendon lesions were induced by injecting 500 IU of Type IA collagenases proximally to the calcaneal tuberosity. Caliper measurement, ultrasonography and elastosonography were then repeated at 15 (T1), 30 (T2) and 60 (T3) days. Clinically measured width of the tendon, ultrasonographic thickness and width and percentage of hard (Elx-t%hrd) and soft (Elx-t%sft) tissue were recorded. Statistical analysis was performed on the data collected; statistical significance was set at p < 0.05. Intra-class correlation coefficient (ICC) revealed good (0.68) repeatability of elastosonographic evaluation of the CCT. The tendon width was significantly increased when comparing T0 with T1–2 and decreased when comparing T1–2 with T3. Ultrasound-assessed thickness was significantly increased between T0–T1 and decreased between T1-T2–3. Elx-t%hrd was significantly decreased at T1–2–3 and Elx-t%sft was significantly increased at T1–2–3. In conclusion, the ovine CCT is a highly stiff structure that undergoes a severe loss of stiffness during the healing process. Thickness and width of the tendon increased during the first 30 days and then reduced progressively along the subsequent 30 days. Ultrasonographic appearance of the tendon remained severely abnormal and the tendon showed severely reduced elastic proprieties 60 days after lesion induction.


Sign in / Sign up

Export Citation Format

Share Document