scholarly journals Regulation of KIF1A motility via polyglutamylation of tubulin C-terminal tails

2018 ◽  
Author(s):  
Dominique V. Lessard ◽  
Oraya J. Zinder ◽  
Takashi Hotta ◽  
Kristen J. Verhey ◽  
Ryoma Ohi ◽  
...  

ABSTRACTAxonal transport is a highly regulated cellular process responsible for site-specific neuronal cargo delivery. This process is mediated in part by KIF1A, a member of the kinesin-3 family of molecular motors. It is imperative that KIF1A’s highly efficient, superprocessive motility along microtubules is tightly regulated as misregulation of KIF1A cargo delivery is observed in many neurodegenerative diseases. However, the regulatory mechanisms responsible for KIF1A’s motility, and subsequent proper spatiotemporal cargo delivery, are largely unknown. One potential regulatory mechanism of KIF1A motility is through the posttranslational modifications (PTMs) of axonal microtubules. These PTMs, often occurring on the C-terminal tails of the microtubule tracks, act as molecular “traffic signals” helping to direct kinesin motor cargo delivery. Occurring on neuronal microtubules, C-terminal tail polygutamylation is known to be important for KIF1A cargo transport. KIF1A’s initial interaction with microtubule C-terminal tails is facilitated by the K-loop, a positively charged surface loop of the KIF1A motor domain. However, the K-loop’s role in KIF1A motility and response to perturbations in C-terminal tail polyglutamylation is underexplored. Using single-molecule imaging, we present evidence of KIF1A’s previously unreported pausing behavior on multiple microtubule structures. Further analysis revealed that these pauses link multiple processive segments together, contributing to KIF1A’s characteristic superprocessive run length. We further demonstrate that KIF1A pausing is mediated by a K-loop/polyglutamylated C-terminal tail interaction and is a regulatory mechanism of KIF1A motility. In summary, we introduce a new mechanism of KIF1A motility regulation, providing further insight into KIF1A’s role in axonal transport.

2021 ◽  
Author(s):  
Christopher L. Berger ◽  
Dominique V. Lessard

Many neurodegenerative diseases result from dysfunction of axonal transport, a highly regulated cellular process responsible for site-specific neuronal cargo delivery. The kinesin-3 family member KIF1A is a key mediator of this process by facilitating long-distance cargo delivery in a spatiotemporally regulated manner. While misregulation of KIF1A cargo delivery is observed in many neurodegenerative diseases, the regulatory mechanisms responsible for KIF1A cargo transport are largely unexplored. Our lab has recently characterized a mechanism for a unique pausing behavior of KIF1A in between processive segments on the microtubule. This behavior, mediated through an interaction between the KIF1A K-loop and the polyglutamylated C-terminal tails of tubulin, helps us further understand how KIF1A conducts long-range cargo transport. However, how this pausing behavior is influenced by other regulatory factors on the microtubule is an unexplored concept. The microtubule associated protein Tau is one potential regulator, as altered Tau function is a pathological marker in many neurodegenerative diseases. However, while the effect of Tau on kinesin-1 and -2 has been extensively characterized, its role in regulating KIF1A transport is greatly unexplored at the behavioral level. Using single-molecule imaging, we have identified Tau-mediated regulation of KIF1A pausing behavior and motility. Specifically, our findings imply a competitive interaction between Tau and KIF1A for the C-terminal tails of tubulin. We introduce a new mechanism of Tau-mediated kinesin regulation by inhibiting the ability of KIF1A to use C-terminal tail reliant pauses to connect multiple processive segments into a longer run length. Moreover, we have correlated this regulatory mechanism to the behavioral dynamics of Tau, further elucidating the function of Tau diffusive and static behavioral state on the microtubule surface. In summary, we introduce a new mechanism of Tau-mediated motility regulation, providing insight on how disruptions in axonal transport can lead to disease state pathology.


2020 ◽  
Author(s):  
Pétur O. Heidarsson ◽  
Davide Mercadante ◽  
Andrea Sottini ◽  
Daniel Nettels ◽  
Madeleine B. Borgia ◽  
...  

SUMMARYProteins with highly charged disordered regions are abundant in the nucleus, where many of them interact with nucleic acids and control key processes such as transcription. The functional advantages conferred by protein disorder, however, have largely remained unclear. Here we show that disorder can facilitate a remarkable regulatory mechanism involving molecular competition. Single-molecule experiments demonstrate that the human linker histone H1 binds to the nucleosome with ultra-high affinity. However, the large-amplitude dynamics of the positively charged disordered regions of H1 persist on the nucleosome and facilitate the interaction with the highly negatively charged and disordered histone chaperone prothymosin α. Consequently, prothymosin α can efficiently invade the H1-nucleosome complex and displace H1 via competitive substitution. By integrating experiments and simulations, we establish a molecular model that rationalizes this process structurally and kinetically. Given the abundance of charged disordered regions in the nuclear proteome, this mechanism may be widespread in cellular regulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


2021 ◽  
Vol 7 (15) ◽  
pp. eabg3013
Author(s):  
Laura Fumagalli ◽  
Florence L. Young ◽  
Steven Boeynaems ◽  
Mathias De Decker ◽  
Arpan R. Mehta ◽  
...  

A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell–derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.


Author(s):  
Maria Dienerowitz ◽  
Jamieson A.L. Howard ◽  
Steven D. Quinn ◽  
Frank Dienerowitz ◽  
Mark C. Leake

Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


2017 ◽  
Vol 216 (10) ◽  
pp. 3161-3178 ◽  
Author(s):  
Xiaoyi Qu ◽  
Feng Ning Yuan ◽  
Carlo Corona ◽  
Silvia Pasini ◽  
Maria Elena Pero ◽  
...  

Oligomeric Amyloid β1–42 (Aβ) plays a crucial synaptotoxic role in Alzheimer’s disease, and hyperphosphorylated tau facilitates Aβ toxicity. The link between Aβ and tau, however, remains controversial. In this study, we find that in hippocampal neurons, Aβ acutely induces tubulin posttranslational modifications (PTMs) and stabilizes dynamic microtubules (MTs) by reducing their catastrophe frequency. Silencing or acute inhibition of the formin mDia1 suppresses these activities and corrects the synaptotoxicity and deficits of axonal transport induced by Aβ. We explored the mechanism of rescue and found that stabilization of dynamic MTs promotes tau-dependent loss of dendritic spines and tau hyperphosphorylation. Collectively, these results uncover a novel role for mDia1 in Aβ-mediated synaptotoxicity and demonstrate that inhibition of MT dynamics and accumulation of PTMs are driving factors for the induction of tau-mediated neuronal damage.


2018 ◽  
Vol 114 (3) ◽  
pp. 531a
Author(s):  
Bianxiao Cui ◽  
Luke Kaplan ◽  
Praveen Chowdary

2019 ◽  
Author(s):  
Laura Fumagalli ◽  
Florence L. Young ◽  
Steven Boeynaems ◽  
Mathias De Decker ◽  
Arpan R. Mehta ◽  
...  

ABSTRACTHexanucleotide repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we use human induced pluripotent stem cell-derived motor neurons to show that C9orf72 repeat expansions impair microtubule-based transport of mitochondria, a process critical for maintenance of neuronal function. Cargo transport defects are recapitulated by treating healthy neurons with the arginine-rich dipeptide repeat proteins (DPRs) that are produced by the hexanucleotide repeat expansions. Single-molecule imaging shows that these DPRs perturb motility of purified kinesin-1 and cytoplasmic dynein-1 motors along microtubules in vitro. Additional in vitro and in vivo data indicate that the DPRs impair transport by interacting with both microtubules and the motor complexes. We also show that kinesin-1 is enriched in DPR inclusions in patient brains and that increasing the level of this motor strongly suppresses the toxic effects of arginine-rich DPR expression in a Drosophila model. Collectively, our study implicates an inhibitory interaction of arginine-rich DPRs with the axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to novel potential therapeutic strategies.


2004 ◽  
Vol 25 ◽  
pp. S428
Author(s):  
Wendy J. Noble ◽  
Michelle A. Utton ◽  
Brian H. Anderton ◽  
Diane P. Hanger

Sign in / Sign up

Export Citation Format

Share Document