scholarly journals The outer membrane proteins OmpA, FhuA, OmpF, EstA, BtuB and OmpX have unique lipopolysaccharide fingerprints

2018 ◽  
Author(s):  
Jonathan Shearer ◽  
Damien Jefferies ◽  
Syma Khalid

AbstractThe outer membrane of Gram-negative bacteria has a highly complex asymmetrical architecture, containing a mixture of phospholipids in the inner leaflet and in the outer leaflet they contain almost exclusively lipopolysaccharide (LPS) molecules. In E. coli, the outer membrane contains a wide range proteins with a beta barrel architecture, that vary in size from the smallest having eight strands to larger barrels composed of twenty-two strands. Here we report coarse-grain molecular dynamics simulations of six proteins from the E. coli outer membrane OmpA, OmpX, BtuB, FhuA, OmpF and EstA in a range of membrane environments, which are representative of the in vivo for different strains of E. coli. We show that each protein has a unique pattern of interaction with the surrounding membrane, which is influenced by the composition of the protein, the level of LPS in the outer leaflet and the differing mobilities of the lipids in the two leaflets of the membrane. Overall we present analyses from over 200 microseconds of simulation for each protein.Author summaryWe present data from over 200 microseconds of coarse-grain simulations that show the complexities of protein-lipid interactions within the outer membranes of Gram-negative bacteria. We show that the slow movement of lipolysaccharide molecules necessitate simulations of over 30 microsecond duration to achieve converged properties such as protein tilt angle. Each of the six proteins studied here shows a unique pattern of interactions with the outer membrane and thus constitute a ‘fingerprint’ or ‘signature’.

2020 ◽  
Vol 76 (5) ◽  
pp. 484-495
Author(s):  
Rhys Grinter ◽  
Trevor Lithgow

The outer membrane of Gram-negative bacteria is highly impermeable to hydrophilic molecules of larger than 600 Da, protecting these bacteria from toxins present in the environment. In order to transport nutrients across this impermeable membrane, Gram-negative bacteria utilize a diverse family of outer-membrane proteins called TonB-dependent transporters. The majority of the members of this family transport iron-containing substrates. However, it is becoming increasingly clear that TonB-dependent transporters target chemically diverse substrates. In this work, the structure and phylogenetic distribution of the TonB-dependent transporter YncD are investigated. It is shown that while YncD is present in some enteropathogens, including Escherichia coli and Salmonella spp., it is also widespread in Gammaproteobacteria and Betaproteobacteria of environmental origin. The structure of YncD was determined, showing that despite a distant evolutionary relationship, it shares structural features with the ferric citrate transporter FecA, including a compact positively charged substrate-binding site. Despite these shared features, it is shown that YncD does not contribute to the growth of E. coli in pure culture under iron-limiting conditions or with ferric citrate as an iron source. Previous studies of transcriptional regulation in E. coli show that YncD is not induced under iron-limiting conditions and is unresponsive to the ferric uptake regulator (Fur). These observations, combined with the data presented here, suggest that YncD is not responsible for the transport of an iron-containing substrate.


2020 ◽  
Author(s):  
Rhys Grinter ◽  
Trevor Lithgow

AbstractThe outer membrane of Gram-negative bacteria is highly impermeable to hydrophilic molecules larger than 600 Da, protecting these bacteria from toxins present in the environment. In order to transport nutrients across this impermeable membrane, Gram-negative bacteria utilise a diverse family of outer-membrane proteins called TonB-dependent transporters. The majority of this family transport iron-containing substrates. However, it is becoming increasingly clear that TonB-dependent transporters target chemically diverse substrates. In this work, we investigate the structure and phylogenetic distribution of the TonB-dependent transporter YncD. We show that while YncD is present in some enteropathogens including E. coli and Salmonella spp., it is also widespread in Gamma and Betaproteobacteria of environmental origin. We determine the structure of YncD, showing that despite a distant evolutionary relationship, it shares structural features with the ferriccitrate transporter FecA, including a compact positively-charged substrate-binding site. Despite these shared features, we show that YncD does not contribute to the growth of E. coli in pure culture under-iron limiting conditions or with ferric-citrate as an iron source. Previous studies on transcriptional regulation in E. coli show that YncD is not induced under iron-limiting conditions and is unresponsive to the Ferric uptake regulator (Fur). These observations combined with the data we present, suggest that YncD is not responsible for the transport of an iron-containing substrate.


2020 ◽  
Vol 295 (30) ◽  
pp. 10340-10367 ◽  
Author(s):  
Jim E. Horne ◽  
David J. Brockwell ◽  
Sheena E. Radford

β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo. We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo. Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.


2017 ◽  
Vol 474 (23) ◽  
pp. 3951-3961 ◽  
Author(s):  
Yinghong Gu ◽  
Yi Zeng ◽  
Zhongshan Wang ◽  
Changjiang Dong

Outer membrane (OM) β-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli, the β-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a ‘top hat’-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel β1C–β6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the β16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique β16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA β1C–β6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts.


2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Emma Nagy ◽  
Richard Losick ◽  
Daniel Kahne

ABSTRACT Lipopolysaccharide (LPS) is normally considered to be essential for viability in Gram-negative bacteria but can be removed in Acinetobacter baumannii. Mutant cells lacking this component of the outer membrane show growth and morphological defects. Here, we report that growth rates equivalent to the wild type can be achieved simply by propagation in minimal medium. The loss of LPS requires that cells rely on phospholipids for both leaflets of the outer membrane. We show that growth rate in the absence of LPS is not limited by nutrient availability but by the rate of outer membrane biogenesis. We hypothesize that because cells grow more slowly, outer membrane synthesis ceases to be rate limiting in minimal medium. IMPORTANCE Gram-negative bacteria are defined by their asymmetric outer membrane that consists of phospholipids on the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. LPS is essential in all but a few Gram-negative species; the reason for this differential essentiality is not well understood. One species that can survive without LPS, Acinetobacter baumannii, shows characteristic growth and morphology phenotypes. We show that these phenotypes can be suppressed under conditions of slow growth and describe how LPS loss is connected to the growth defects. In addition to better defining the challenges A. baumannii cells face in the absence of LPS, we provide a new hypothesis that may explain the species-dependent conditional essentiality.


2020 ◽  
Vol 117 (31) ◽  
pp. 18737-18743 ◽  
Author(s):  
Elizabeth M. Hart ◽  
Meera Gupta ◽  
Martin Wühr ◽  
Thomas J. Silhavy

The outer membrane (OM) of gram-negative bacteria confers innate resistance to toxins and antibiotics. Integral β-barrel outer membrane proteins (OMPs) function to establish and maintain the selective permeability of the OM. OMPs are assembled into the OM by the β-barrel assembly machine (BAM), which is composed of one OMP—BamA—and four lipoproteins—BamB, C, D, and E. BamB, C, and E can be removed individually with only minor effects on barrier function; however, depletion of either BamA or BamD causes a global defect in OMP assembly and results in cell death. We have identified a gain-of-function mutation,bamAE470K, that bypasses the requirement for BamD. AlthoughbamD::kanbamAE470Kcells exhibit growth and OM barrier defects, they assemble OMPs with surprising robustness. Our results demonstrate that BamD does not play a catalytic role in OMP assembly, but rather functions to regulate the activity of BamA.


2015 ◽  
Vol 291 (4) ◽  
pp. 1921-1932 ◽  
Author(s):  
Matthias Urfer ◽  
Jasmina Bogdanovic ◽  
Fabio Lo Monte ◽  
Kerstin Moehle ◽  
Katja Zerbe ◽  
...  

Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM.


1991 ◽  
Vol 174 (5) ◽  
pp. 1167-1177 ◽  
Author(s):  
J Vuopio-Varkila ◽  
G K Schoolnik

Enteropathogenic Escherichia coli grow as discrete colonies on the mucous membranes of the small intestine. A similar pattern can be demonstrated in vitro; termed localized adherence (LA), it is characterized by the presence of circumscribed clusters of bacteria attached to the surfaces of cultured epithelial cells. The LA phenotype was studied using B171, an O111:NM enteropathogenic E. coli (EPEC) strain, and HEp-2 cell monolayers. LA could be detected 30-60 min after exposure of HEp-2 cells to B171. However, bacteria transferred from infected HEp-2 cells to fresh monolayers exhibited LA within 15 min, indicating that LA is an inducible phenotype. Induction of the LA phenotype was found to be associated with de novo protein synthesis and changes in the outer membrane proteins, including the production of a new 18.5-kD polypeptide. A partial NH2-terminal amino acid sequence of this polypeptide was obtained and showed it to be identical through residue 12 to the recently described bundle-forming pilus subunit of EPEC. Expression of the 18.5-kD polypeptide required the 57-megadalton enteropathogenic E. coli adherence plasmid previously shown to be required for the LA phenotype in vitro and full virulence in vivo. This observation, the correspondence of the 18.5-kD polypeptide to an EPEC-specific pilus protein, and the temporal correlation of its expression with the development of the LA phenotype suggest that it may contribute to the EPEC colonial mode of growth.


2020 ◽  
Vol 61 (6) ◽  
pp. 870-883 ◽  
Author(s):  
Inga Nilsson ◽  
Sheng Y. Lee ◽  
William S. Sawyer ◽  
Christopher M. Baxter Rath ◽  
Guillaume Lapointe ◽  
...  

Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPSs) on the outer leaflet and phospholipids (PLs) on the inner leaflet. The loss of this asymmetry due to mutations in the LPS biosynthesis or transport pathways causes the externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we used metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase expression in Escherichia coli allowed for the incorporation of exogenous propargylcholine into phosphatidyl(propargyl)choline and exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC), as confirmed by LC/MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool for detecting a compromised bacterial OM, revealing aberrant PL externalization, and identifying or characterizing novel cell-active inhibitors of LPS biosynthesis or transport.­


Sign in / Sign up

Export Citation Format

Share Document