scholarly journals PROCYCLIC Trypanosoma brucei CELL CYCLE is IMPAIRED at the G1 STAGE by the PRESENCE of POLY (ADP-RIBOSE) in the NUCLEUS

2018 ◽  
Author(s):  
Mariana Schlesinger ◽  
Salomé C. Vilchez Larrea ◽  
Silvia H. Fernández Villamil

AbstractPreviously we demonstrated that an excess of poly (ADP-ribose) in the nucleus makes procyclic parasites more sensitive to hydrogen peroxide. However, the effect of an altered-PAR metabolism under standard conditions has not been addressed yet. Here we have analyzed the behavior of the growth curve of transgenic parasites that present this phenotype and studied cell cycle progression in synchronized cultures by flow cytometry and immunofluorescence. We have demonstrated that an excess of nuclear poly (ADP-ribose) produces a delay in the G1 phase of the cell cycle. Moreover, for the first time we have shown that poly (ADP-ribose) occurs at specific points very close to the mature basal body, suggesting there could be a link between the kinetoplast and poly (ADP-ribose) metabolism.

2017 ◽  
Vol 208 ◽  
pp. 84-93 ◽  
Author(s):  
Wojciech Pokora ◽  
Anna Aksmann ◽  
Agnieszka Baścik-Remisiewicz ◽  
Agnieszka Dettlaff-Pokora ◽  
Max Rykaczewski ◽  
...  

2020 ◽  
Author(s):  
Leonardo Lonati ◽  
Sofia Barbieri ◽  
Isabella Guardamagna ◽  
Andrea Ottolenghi ◽  
Giorgio Baiocco

AbstractCell cycle progression can be studied with computational models that allow to describe and predict its perturbation by agents as ionizing radiation or drugs. Such models can then be integrated in tools for pre-clinical/clinical use, e.g. to optimize kinetically-based administration protocols of radiation therapy and chemotherapy.We present a deterministic compartmental model, specifically reproducing how cells that survive radiation exposure are distributed in the cell cycle as a function of dose and time after exposure. Model compartments represent the four cell-cycle phases, as a fuction of DNA content and time. A system of differential equations, whose parameters represent transition rates, division rate and DNA synthesis rate, describes the temporal evolution. Initial model inputs are data from unexposed cells in exponential growth. Perturbation is implemented as an alteration of model parameters that allows to best reproduce cell-cycle profiles post-irradiation. The model is validated with dedicated in vitro measurements on human lung fibroblasts (IMR90). Cells were irradiated with 2 and 5 Gy with a Varian 6 MV Clinac at IRCCS Maugeri. Flow cytometry analysis was performed at the RadBioPhys Laboratory (University of Pavia), obtaining cell percentages in each of the four phases in all studied conditions up to 72 hours post-irradiation.Cells show early G2-phase block (increasing in duration as dose increases) and later G1-phase accumulation. For each condition, we identified the best sets of model parameters that lead to a good agreement between model and experimental data, varying transition rates from G1- to S- and from G2- to M-phase.This work offers a proof-of-concept validation of the new computational tool, opening to its future development and, in perspective, to its integration in a wider framework for clinical use.Author summaryWe implemented a computational model able to describe how the progression in the cell cycle is perturbed when cells are exposed to ionizing radiation. It is known that radiation causes delays or arrest in cell cycle progression, and also that cells that are in different phases of the cycle at the time of exposure show different sensitivity to radiation. Chemotherapeutic drugs also affect cell cycle, and their action can be phase-specific. These findings can be exploited to find the optimal protocol of a combined radiotherapy/chemotherapy cancer treatment: to this aim, we need to know not only the effectiveness of an agent (dose/drug) in terms of cell killing, but also how surviving cells are distributed in the cell cycle. With the model we present, this information can be reproduced as a function of dose and time after radiation exposure. To test the model performance we measured distributions of cells in different phases of the cycle (using flow-cytometry) for human healthy fibroblast cells exposed to X-rays. The results of this work constitute a first step for further development of our model and its future integration in a tool for pre-clinical/clinical use.


1983 ◽  
Vol 38 (3-4) ◽  
pp. 313-318 ◽  
Author(s):  
Rainer Merz ◽  
Friedhelm Schneider

Utilizing centrifugal elutriation, early and late S-phase cells were separated from 4, 8 and 12 h anaerobically cultured Ehrlich Ascites tumor cells strain Karzel. The cytokinetic properties of these fractions after reaeration were studied by flow cytometry and the BrdU-H 33258-technique of flow cytometry. After a 4 h period of anaerobiosis, growth of early S-phase cells is not changed, 8 h deprivation of oxygen causes a delay of cell cycle progression, while the main fraction of 12 h anaerobically treated early S-populations did not divide after reaeration within 24 h. In comparison to early S-phase cells the cell cycle progression of the main fraction of late S-period is accelerated after a 4 h exclusion of oxygen. A fraction of 8 h anaerobically pretreated late S-cells continues to cycle, but a considerable number reinitiates DNA synthesis without preceeding division. Cells with DNA content up to 8 c are detected by flow cytometry. 12 h anaerobically cultured late S-cells do not divide after reaeration, a large number of these cells starts again to synthesize DNA. A considerable part of tetraploid cells retain viability, divide and enter a new cell cycle, another part of the cells disintegrates


1993 ◽  
Vol 13 (6) ◽  
pp. 3577-3587 ◽  
Author(s):  
E A Musgrove ◽  
J A Hamilton ◽  
C S Lee ◽  
K J Sweeney ◽  
C K Watts ◽  
...  

Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.


1993 ◽  
Vol 57 (2) ◽  
pp. 241-252 ◽  
Author(s):  
Grant A. Morgan ◽  
Harrington B. Laufman ◽  
Frederick P. Otieno-Omondo ◽  
Samuel J. Black

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2028-2028
Author(s):  
A. PeerZada ◽  
M. Geletu ◽  
J. Pullikan ◽  
V. Reddy ◽  
W. Hiddemann ◽  
...  

Abstract We applied a mass spectrometry based approach to explore the proteins differentially regulated by PML-RARalpha, a translocation characteristic of acute promyelocytic leukemia (APL). Bioinformatic pathway analysis placed the 46 identified PML-RARalpha regulated proteins into three major networks, OP18-MAPK1, HSP-STAT3 and CCT-MYC. Using this approach, we were able to generate a common cell cycle network of the proteins in these pathways. Further analysis indicated that mRNA expression of OP18, which belonged to this network, was elevated in APL patients and the increased OP18 protein expression upon PML-RARalpha induction was overcome by retinoic acid treatment. Here we also report, for the first time a novel role of PML-RARalpha in cell cycle progression and mitotic exit. RNA interference experiments revealed that siRNA against OP18 overcomes PML-RARalpha effects on cell cycle progression. In addition to increased OP18 expression by PML-RARalpha, 2D gel electrophoresis revealed an isomer of OP18, subsequently confirmed by 2D-western as ser63 phosphomer to be downregulated by PML-RARalpha. Based on these findings, point mutation experiments indicated that decreased phosphorylation of ser63 in OP18 is important for PML-RARalpha mediated cell cycle and mitotic index effects since a constitutive phosphorylated mutant (ser63/asp) of OP18 overcame the PML-RARalpha effects in U9/PR cells, NB4 and APL patients. In summary, our results demonstrate that the effect of PML-RARalpha on cell cycle progression and mitotic exit is via two mechanisms: increasing the expression of OP18 and decreasing the phosphorylation of OP18 at ser63.


2014 ◽  
Vol 194 (1-2) ◽  
pp. 48-52 ◽  
Author(s):  
Karen G. Rothberg ◽  
Neal Jetton ◽  
James G. Hubbard ◽  
Daniel A. Powell ◽  
Vidya Pandarinath ◽  
...  

Oncogene ◽  
2007 ◽  
Vol 26 (39) ◽  
pp. 5772-5783 ◽  
Author(s):  
A-A Chassot ◽  
L Turchi ◽  
T Virolle ◽  
G Fitsialos ◽  
M Batoz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document