scholarly journals Adaptations during maturation in an identified honeybee interneuron responsive to waggle dance vibration signals

2018 ◽  
Author(s):  
Ajayrama Kumaraswamy ◽  
Hiroyuki Ai ◽  
Kazuki Kai ◽  
Hidetoshi Ikeno ◽  
Thomas Wachtler

AbstractHoneybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations using antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged and forager honeybees. Comparison of morphological reconstructions of the neurons revealed minor changes in gross dendritic features and consistent, region dependent and spatially localized changes in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and non-stimulus periods in foragers compared to newly emerged adult bees. The observed differences in neurons of foragers as compared to newly emerged adult honeybees indicate refined connectivity, improved signal propagation, and enhancement of response features important for the network processing of air vibration signals relevant for the waggle-dance communication of honeybees.

2021 ◽  
Author(s):  
Ettore Tiraboschi ◽  
Luana Leonardelli ◽  
Gianluca Segata ◽  
Elisa Rigosi ◽  
Albrecht Haase

We report that airflow produces a complex activation pattern in the antennal lobes of the honeybee Apis mellifera. Glomerular response maps provide a stereotypical code for the intensity and the dynamics of mechanical stimuli that is superimposed on the olfactory code. We show responses to modulated stimuli suggesting that this combinatorial code could provide information about the intensity, direction, and dynamics of the airflow during flight and waggle dance communication.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3441 ◽  
Author(s):  
Fabian Nürnberger ◽  
Ingolf Steffan-Dewenter ◽  
Stephan Härtel

The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health.


2019 ◽  
Vol 316 (2) ◽  
pp. R110-R120 ◽  
Author(s):  
Yiming Shen ◽  
Jin Bong Park ◽  
So Yeong Lee ◽  
Seong Kyu Han ◽  
Pan Dong Ryu

Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.


eNeuro ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. ENEURO.0454-18.2019 ◽  
Author(s):  
Ajayrama Kumaraswamy ◽  
Hiroyuki Ai ◽  
Kazuki Kai ◽  
Hidetoshi Ikeno ◽  
Thomas Wachtler

Insects ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 424 ◽  
Author(s):  
Randolf Menzel

The notion of the waggle dance simulating a flight towards a goal in a walking pattern has been proposed in the context of evolutionary considerations. Behavioral components, like its arousing effect on the social community, the attention of hive mates induced by this behavior, the direction of the waggle run relative to the sun azimuth or to gravity, as well as the number of waggles per run, have been tentatively related to peculiar behavioral patterns in both solitary and social insect species and are thought to reflect phylogenetic pre-adaptations. Here, I ask whether these thoughts can be substantiated from a functional perspective. Communication in the waggle dance is a group phenomenon involving the dancer and the followers that perform partially overlapping movements encoding and decoding the message respectively. It is thus assumed that the dancer and follower perform close cognitive processes. This provides us with access to these cognitive processes during dance communication because the follower can be tested in its flight performance when it becomes a recruit. I argue that the dance message and the landscape experience are processed in the same navigational memory, allowing the bee to fly novel direct routes, a property understood as an indication of a cognitive map.


2004 ◽  
Vol 94 (3_suppl) ◽  
pp. 1107-1115 ◽  
Author(s):  
Charles I. Abramson ◽  
Aaron J. Place ◽  
Italo S. Aquino ◽  
Andrea Fernandez

Experiments were designed to determine whether ethanol influenced aggression in honey bees. Two experiments are reported. In Exp. 1, harnessed honey bees were fed a 1%, 5%, 10%, or 20% ethanol solution. Two control groups received either a sucrose solution only or no pretreatment, respectively. The dependent variable was the number of sting extensions over 10 min. Analysis showed that aggression in harnessed bees was not influenced by prior ethanol consumption. Because there was some suspicion that the extension of the sting apparatus may be hindered by harnessing, and the authors wanted to use a design that increased ecological validity, Exp. 2 was conducted with free-flying bees. Sucrose or 20% ethanol solutions were placed in front of beehives, and the number of stings on a leather patch dangled in front of the hive served as the dependent variable. The experiment was terminated after 5 hr. because bees exposed to ethanol became dangerously aggressive. A unique aspect of the study was that Africanized honey bees were used.


2020 ◽  
Vol 23 (2) ◽  
pp. 477-482 ◽  
Author(s):  
Zu Yun Zhang ◽  
Zhen Li ◽  
Qiang Huang ◽  
Wei Yu Yan ◽  
Li Zhen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document