scholarly journals Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals

2019 ◽  
Author(s):  
◽  
Yen-Chen Anne Feng ◽  
Daniel P. Howrigan ◽  
Liam E. Abbott ◽  
Katherine Tashman ◽  
...  

AbstractSequencing-based studies have identified novel risk genes for rare, severe epilepsies and revealed a role of rare deleterious variation in common epilepsies. To identify the shared and distinct ultra-rare genetic risk factors for rare and common epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,364 controls of European ancestry. We focused on three phenotypic groups; the rare but severe developmental and epileptic encephalopathies (DEE), and the commoner phenotypes of genetic generalized epilepsy (GGE) and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy, with the strongest enrichment seen in DEE and the least in NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, while no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEE and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the top associations, including CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study confirms a convergence in the genetics of common and rare epilepsies associated with ultra-rare coding variation and highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology in the largest epilepsy WES study to date.

2021 ◽  
Vol 132 (2) ◽  
pp. S113
Author(s):  
Elizabeth Geena Woo ◽  
Frank Donovan ◽  
Barbara Stubblefield ◽  
Settara Chandrasekharappa ◽  
Grisel Lopez ◽  
...  

Gene ◽  
2021 ◽  
pp. 146099
Author(s):  
Shaheen Laskar ◽  
Raima Das ◽  
Sharbadeb Kundu ◽  
Amrita Saha ◽  
Nilashis Nandi ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Sara Konstantin Nissen ◽  
Mette Christiansen ◽  
Marie Helleberg ◽  
Kathrine Kjær ◽  
Sofie Eg Jørgensen ◽  
...  

2017 ◽  
Vol 3 (5) ◽  
pp. e177 ◽  
Author(s):  
Javier Ruiz-Martínez ◽  
Luis J. Azcona ◽  
Alberto Bergareche ◽  
Jose F. Martí-Massó ◽  
Coro Paisán-Ruiz

Objective:Despite the enormous advancements made in deciphering the genetic architecture of Parkinson disease (PD), the majority of PD is idiopathic, with single gene mutations explaining only a small proportion of the cases.Methods:In this study, we clinically evaluated 2 unrelated Spanish families diagnosed with PD, in which known PD genes were previously excluded, and performed whole-exome sequencing analyses in affected individuals for disease gene identification.Results:Patients were diagnosed with typical PD without relevant distinctive symptoms. Two different novel mutations were identified in the CSMD1 gene. The CSMD1 gene, which encodes a complement control protein that is known to participate in the complement activation and inflammation in the developing CNS, was previously shown to be associated with the risk of PD in a genome-wide association study.Conclusions:We conclude that the CSMD1 mutations identified in this study might be responsible for the PD phenotype observed in our examined patients. This, along with previous reported studies, may suggest the complement pathway as an important therapeutic target for PD and other neurodegenerative diseases.


The Breast ◽  
2019 ◽  
Vol 44 ◽  
pp. S36
Author(s):  
A. Okunola ◽  
R. Torrorey-Sawe ◽  
K.J. Baatjes ◽  
A.E. Zemlin ◽  
R.T. Erasmus ◽  
...  

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Irit Tirosh ◽  
Shiri Spielman ◽  
Ortal Barel ◽  
Reut Ram ◽  
Tali Stauber ◽  
...  

2020 ◽  
Vol 70 (11) ◽  
pp. 881-887
Author(s):  
Hiroyuki Katsuragawa ◽  
Yosuke Yamada ◽  
Yoshihiro Ishida ◽  
Yo Kaku ◽  
Masakazu Fujimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document