scholarly journals SorCS1-mediated Sorting of Neurexin in Dendrites Maintains Presynaptic Function

2019 ◽  
Author(s):  
Luís F. Ribeiro ◽  
Ben Verpoort ◽  
Julie Nys ◽  
Kristel M. Vennekens ◽  
Keimpe D. Wierda ◽  
...  

AbstractThe pre- and postsynaptic membranes comprising the synaptic junction differ in protein composition. The mechanisms that maintain the polarized distribution of synaptic membrane proteins are poorly understood. The sorting receptor SorCS1 is a critical trafficking regulator of neuronal receptors, including neurexin (Nrxn), a presynaptic adhesion molecule essential for synaptic transmission. We find that SorCS1 controls a balance between axonal and dendritic Nrxn1α surface levels. Newly synthesized Nrxn1α traffics to the somatodendritic surface, followed by endocytosis. SorCS1 interacts with the Rab11 effector protein Rab11FIP5/Rip11 to facilitate the transition of internalized Nrxn1α from early to recycling endosomes and bias Nrxn1α surface polarization toward the axon. In the absence of SorCS1, Nrxn1α accumulates in early endosomes and mis-polarizes to the dendritic surface, impairing presynaptic function. The axonal/dendritic balance of Nrxn1α surface distribution is activity-dependent, indicating that SorCS1-mediated sorting in somatodendritic endosomes dynamically controls Nrxn1α axonal surface polarization required for proper presynaptic function.

2010 ◽  
Vol 299 (3) ◽  
pp. G742-G750 ◽  
Author(s):  
P. Cong ◽  
V. Pricolo ◽  
P. Biancani ◽  
J. Behar

The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-( t-butyl)pyrazolo[3,4- d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a δ-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM.


2015 ◽  
Vol 112 (12) ◽  
pp. E1443-E1452 ◽  
Author(s):  
Zhiyong Bai ◽  
Barth D. Grant

Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.


2020 ◽  
Vol 318 (4) ◽  
pp. F956-F970 ◽  
Author(s):  
Wei-Ling Wang ◽  
Shih-Han Su ◽  
Kit Yee Wong ◽  
Chan-Wei Yang ◽  
Chin-Fu Liu ◽  
...  

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


2019 ◽  
Vol 12 (579) ◽  
pp. eaav5938 ◽  
Author(s):  
Mallika Ghosh ◽  
Robin Lo ◽  
Ivan Ivic ◽  
Brian Aguilera ◽  
Veneta Qendro ◽  
...  

Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the β1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with β1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized β1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.


Author(s):  
Anna Ciesielska ◽  
Marta Matyjek ◽  
Katarzyna Kwiatkowska

Abstract Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.


2001 ◽  
Vol 12 (9) ◽  
pp. 2790-2799 ◽  
Author(s):  
Elizabeth M. Bennett ◽  
Sharron X. Lin ◽  
Mhairi C. Towler ◽  
Frederick R. Maxfield ◽  
Frances M. Brodsky

Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.


2007 ◽  
Vol 18 (10) ◽  
pp. 3978-3992 ◽  
Author(s):  
Asli Oztan ◽  
Mark Silvis ◽  
Ora A. Weisz ◽  
Neil A. Bradbury ◽  
Shu-Chan Hsu ◽  
...  

The octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-O–permeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis. The latter was selectively dependent on interactions between the small GTPase Rab11a and Sec15A and was inhibited by expression of the C-terminus of Sec15A or down-regulation of Sec15A expression using shRNA. These results indicate that the exocyst complex may be a multipurpose regulator of endocytic traffic directed toward both poles of polarized epithelial cells and that transcytotic traffic is likely to require Rab11a-dependent recruitment and modulation of exocyst function, likely through interactions with Sec15A.


Neuron ◽  
2005 ◽  
Vol 45 (2) ◽  
pp. 245-255 ◽  
Author(s):  
Hong Lou ◽  
Soo-Kyung Kim ◽  
Eugene Zaitsev ◽  
Chris R. Snell ◽  
Bai Lu ◽  
...  

2002 ◽  
Vol 157 (7) ◽  
pp. 1211-1222 ◽  
Author(s):  
László Hunyady ◽  
Albert J. Baukal ◽  
Zsuzsanna Gáborik ◽  
Jesus A. Olivares-Reyes ◽  
Márta Bor ◽  
...  

Agonist-induced endocytosis and processing of the G protein–coupled AT1 angiotensin II (Ang II) receptor (AT1R) was studied in HEK 293 cells expressing green fluorescent protein (GFP)– or hemagglutinin epitope–tagged forms of the receptor. After stimulation with Ang II, the receptor and its ligand colocalized with Rab5–GFP and Rab4–GFP in early endosomes, and subsequently with Rab11–GFP in pericentriolar recycling endosomes. Inhibition of phosphatidylinositol (PI) 3-kinase by wortmannin (WT) or LY294002 caused the formation of large endosomal vesicles of heterogeneous Rab composition, containing the ligand–receptor complex in their limiting membranes and in small associated vesicular structures. In contrast to Alexa®–transferrin, which was mainly found in small vesicles associated with the outside of large vesicles in WT-treated cells, rhodamine–Ang II was also segregated into small internal vesicles. In cells labeled with 125I-Ang II, WT treatment did not impair the rate of receptor endocytosis, but significantly reduced the initial phase of receptor recycling without affecting its slow component. Similarly, WT inhibited the early, but not the slow, component of the recovery of AT1R at the cell surface after termination of Ang II stimulation. These data indicate that internalized AT1 receptors are processed via vesicles that resemble multivesicular bodies, and recycle to the cell surface by a rapid PI 3-kinase–dependent recycling route, as well as by a slower pathway that is less sensitive to PI 3-kinase inhibitors.


2011 ◽  
Vol 193 (1) ◽  
pp. 201-217 ◽  
Author(s):  
Avital A. Rodal ◽  
Aline D. Blunk ◽  
Yulia Akbergenova ◽  
Ramon A. Jorquera ◽  
Lauren K. Buhl ◽  
...  

Structural remodeling of synapses in response to growth signals leads to long-lasting alterations in neuronal function in many systems. Synaptic growth factor receptors alter their signaling properties during transit through the endocytic pathway, but the mechanisms controlling cargo traffic between endocytic compartments remain unclear. Nwk (Nervous Wreck) is a presynaptic F-BAR/SH3 protein that regulates synaptic growth signaling in Drosophila melanogaster. In this paper, we show that Nwk acts through a physical interaction with sorting nexin 16 (SNX16). SNX16 promotes synaptic growth signaling by activated bone morphogenic protein receptors, and live imaging in neurons reveals that SNX16-positive early endosomes undergo transient interactions with Nwk-containing recycling endosomes. We identify an alternative signal termination pathway in the absence of Snx16 that is controlled by endosomal sorting complex required for transport (ESCRT)–mediated internalization of receptors into the endosomal lumen. Our results define a presynaptic trafficking pathway mediated by SNX16, NWK, and the ESCRT complex that functions to control synaptic growth signaling at the interface between endosomal compartments.


Sign in / Sign up

Export Citation Format

Share Document