scholarly journals Functional RNA Structures in the 3’UTR of Tick-Borne, Insect-Specific and No-Known-Vector Flaviviruses

2019 ◽  
Author(s):  
Roman Ochsenreiter ◽  
Ivo L. Hofacker ◽  
Michael T. Wolfinger

AbstractUntranslated regions (UTRs) of flaviviruses contain a large number of RNA structural elements involved in mediating the viral life cycle, including cyclisation, replication, and encapsidation. Here we report on a comparative genomics approach to characterize evolutionarily conserved RNAs in the 3’UTR of tick-borne, insect-specific and no-known-vector flavivirusesin silico. Our data support the wide distribution of previously experimentally characterized exoribonuclease resistant RNAs (xrRNAs) within tick-borne and no-known-vector flaviviruses and provide evidence for the existence of a cascade of duplicated RNA structures within insect-specific flaviviruses. On a broader scale, our findings indicate that viral 3’UTRs represent a flexible scaffold for evolution to come up with novel xrRNAs.

Author(s):  
Roman Ochsenreiter ◽  
Ivo L. Hofacker ◽  
Michael T. Wolfinger

Untranslated regions (UTRs) of flaviviruses contain a large number of RNA structural elements involved in mediating the viral life cycle, including cyclisation, replication, and encapsidation. Here we report on a comparative genomics approach to characterize evolutionarily conserved RNAs in the 3'UTR of tick-borne, insect-specific and no-known-vector flaviviruses in silico. Our data support the wide distribution of previously experimentally characterized exoribonuclease resistant RNAs xrRNAs within tick-borne and no-known-vector flaviviruses and provide evidence for the existence of a cascade of duplicated RNA structures within insect-specific flaviviruses. On a broader scale, our findings indicate that viral 3'UTRs represent a flexible scaffold for evolution to come up with novel xrRNAs


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 298 ◽  
Author(s):  
Roman Ochsenreiter ◽  
Ivo Hofacker ◽  
Michael Wolfinger

Untranslated regions (UTRs) of flaviviruses contain a large number of RNA structural elements involved in mediating the viral life cycle, including cyclisation, replication, and encapsidation. Here we report on a comparative genomics approach to characterize evolutionarily conserved RNAs in the 3 ′ UTR of tick-borne, insect-specific and no-known-vector flaviviruses in silico. Our data support the wide distribution of previously experimentally characterized exoribonuclease resistant RNAs (xrRNAs) within tick-borne and no-known-vector flaviviruses and provide evidence for the existence of a cascade of duplicated RNA structures within insect-specific flaviviruses. On a broader scale, our findings indicate that viral 3 ′ UTRs represent a flexible scaffold for evolution to come up with novel xrRNAs.


2018 ◽  
Author(s):  
Andrey Chursov ◽  
Nathan Fridlyand ◽  
Albert A. Sufianov ◽  
Oleg I. Kiselev ◽  
Irina Baranovskaya ◽  
...  

ABSTRACTRNA molecules often fold into evolutionarily selected functional structures. Yet, the literature offers neither a satisfactory definition for “structured RNA regions”, nor a computational method to accurately identify such regions. Here, we define structured RNA regions based on the premise that both stems and loops in functional RNA structures should be conserved among RNA molecules sharing high sequence homology. In addition, we present a computational approach to identify RNA regions possessing evolutionarily conserved secondary structures, RNA ISRAEU (RNA Identification of Structured Regions As Evolutionary Unchanged). Applying this method to H1N1 influenza mRNAs revealed previously unknown structured RNA regions that are potentially essential for viral replication and/or propagation. Evolutionary conservation of RNA structural elements may explain, in part, why mutations in some nucleotide positions within influenza mRNAs occur significantly more often than in others. We found that mutations occurring in conserved nucleotide positions may be more disruptive for structured RNA regions than single nucleotide polymorphisms in positions that are more prone to changes. Finally, we predicted computationally a previously unknown stem-loop structure and demonstrated that oligonucleotides complementing the stem (but not the loop or unrelated sequences) reduce viral replicationin vitro.These results contribute to understanding influenza A virus evolution and can be applied to rational design of attenuated vaccines and/or drug designs based on disrupting conserved RNA structural elements.AUTHOR SUMMARYRNA structures play key biological roles. However, the literature offers neither a satisfactory definition for “structured RNA regions” nor the computational methodology to identify such regions. We define structured RNA regions based on the premise that functionally relevant RNA structures should be evolutionarily conserved, and devise a computational method to identify RNA regions possessing evolutionarily conserved secondary structural elements. Applying this method to influenza virus mRNAs of pandemic and seasonal H1N1 influenza A virus generated Predicted Structured Regions (PSRs), which were previously unknown. This explains the previously mysterious sequence conservation among evolving influenza strains. Also, we have experimentally supported existence of a computationally predicted stem-loop structure predicted computationally. Our approach may be useful in designing live attenuated influenza vaccines and/or anti-viral drugs based on disrupting necessary conserved RNA structures.


2019 ◽  
Author(s):  
Adriano de Bernardi Schneider ◽  
Roman Ochsenreiter ◽  
Reilly Hostager ◽  
Ivo L. Hofacker ◽  
Daniel Janies ◽  
...  

AbstractChikungunya virus (CHIKV), a mosquito-borne alphavirus of the family Togaviridae, has recently emerged in the Americas from lineages from two continents, Asia and Africa. Historically, CHIKV circulated as at least four lineages worldwide with both enzootic and epidemic transmission cycles. To understand the recent patterns of emergence and the current status of the CHIKV spread, updated analyses of the viral genetic data and metadata are needed. Here, we performed phylogenetic and comparative genomics screens of CHIKV genomes, taking advantage of the public availability of many recently sequenced isolates. Based on these new data and analyses, we derive a revised phylogeny from nucleotide sequences in coding regions. Using this phylogeny, we uncover the presence of several distinct lineages in Africa that were previously considered a single one. In parallel, we performed thermodynamic modeling of CHIKV untranslated regions (UTRs), which revealed evolutionarily conserved structured and unstructured RNA elements in the 3’UTR. We provide evidence for duplication events in recently emerged American isolates of the Asian CHIKV lineage and propose the existence of a flexible 3’UTR architecture among different CHIKV lineages.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 798 ◽  
Author(s):  
Adriano de Bernardi Schneider ◽  
Roman Ochsenreiter ◽  
Reilly Hostager ◽  
Ivo L. Hofacker ◽  
Daniel Janies ◽  
...  

Chikungunya virus (CHIKV), a mosquito-borne alphavirus of the family Togaviridae, has recently emerged in the Americas from lineages from two continents: Asia and Africa. Historically, CHIKV circulated as at least four lineages worldwide with both enzootic and epidemic transmission cycles. To understand the recent patterns of emergence and the current status of the CHIKV spread, updated analyses of the viral genetic data and metadata are needed. Here, we performed phylogenetic and comparative genomics screens of CHIKV genomes, taking advantage of the public availability of many recently sequenced isolates. Based on these new data and analyses, we derive a revised phylogeny from nucleotide sequences in coding regions. Using this phylogeny, we uncover the presence of several distinct lineages in Africa that were previously considered a single one. In parallel, we performed thermodynamic modeling of CHIKV untranslated regions (UTRs), which revealed evolutionarily conserved structured and unstructured RNA elements in the 3’UTR. We provide evidence for duplication events in recently emerged American isolates of the Asian CHIKV lineage and propose the existence of a flexible 3’UTR architecture among different CHIKV lineages.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hannah Steinert ◽  
Florian Sochor ◽  
Anna Wacker ◽  
Janina Buck ◽  
Christina Helmling ◽  
...  

In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.


Author(s):  
Adriano de Bernardi Schneider ◽  
Roman Ochsenreiter ◽  
Reilly Hostager ◽  
Ivo L. Hofacker ◽  
Daniel Janies ◽  
...  

Chikungunya virus (CHIKV), a mosquito-borne alphavirus of the family Togaviridae, has recently emerged in the Americas from lineages from two continents, Asia and Africa. Historically, CHIKV circulated as at least four lineages worldwide with both enzootic and epidemic transmission cycles. To understand the recent patterns of emergence and the current status of the CHIKV spread, updated analyses of the viral genetic data and metadata are needed. Here, we performed phylogenetic and comparative genomics screens of CHIKV genomes, taking advantage of the public availability of many recently sequenced isolates. Based on these new data and analyses, we derive a revised phylogeny from nucleotide sequences in coding regions. Using this phylogeny, we uncover the presence of several distinct lineages in Africa that were previously considered a single one. In parallel, we performed thermodynamic modeling of CHIKV untranslated regions (UTRs), which revealed evolutionarily conserved structured and unstructured RNA elements in the 3'UTR. We provide evidence for duplication events in recently emerged American isolates of the Asian CHIKV lineage and propose the existence of a flexible 3'UTR architecture among different CHIKV lineages.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 772
Author(s):  
Isao Murakami ◽  
Takashi Iwata ◽  
Tohru Morisada ◽  
Kyoko Tanaka ◽  
Daisuke Aoki

Several human papillomaviruses (HPV) are associated with the development of cervical carcinoma. HPV DNA synthesis is increased during the differentiation of infected host keratinocytes as they migrate from the basal layer of the epithelium to the spinous layer, but the molecular mechanism is unclear. Nucleosome positioning affects various cellular processes such as DNA replication and repair by permitting the access of transcription factors to promoters to initiate transcription. In this study, nucleosome positioning on virus chromatin was investigated in normal immortalized keratinocytes (NIKS) stably transfected with HPV16 or HPV18 genomes to determine if there is an association with the viral life cycle. Micrococcal nuclease-treated DNA analyzed by Southern blotting using probes against HPV16 and HPV18 and quantified by nucleosome scanning analysis using real-time PCR revealed mononucleosomal-sized fragments of 140–200 base pairs that varied in their location within the viral genome according to whether the cells were undergoing proliferation or differentiation. Notably, changes in the regions around nucleotide 110 in proliferating and differentiating host cells were common to HPV16 and HPV18. Our findings suggest that changes in nucleosome positions on viral DNA during host cell differentiation is an important regulatory event in the viral life cycle.


Sign in / Sign up

Export Citation Format

Share Document