scholarly journals Characterization of pathology-inducing α-synuclein species from human diseased brain tissue

2019 ◽  
Author(s):  
John D. Graef ◽  
Nina Hoque ◽  
Craig Polson ◽  
Ling Yang ◽  
Lawrence Iben ◽  
...  

AbstractSynucleinopathies are a group of neurodegenerative diseases characterized by the presence of pathological accumulations of misfolded, phosphorylated α-synuclein (αSyn) protein. Multiple lines of evidence indicate that synucleinopathy disease progression is driven by a prion-like process of transmission of a pathologic form of αSyn. One potential therapeutic approach to prevent cell-to-cell propagation is to target this transmissible species with selective antibodies. In this study, a rodent primary neuronal culture reporter system was developed to monitor induction of detergent-insoluble, phosphorylated (pS129) aggregates of αSyn. Induction of pS129 αSyn pathology was observed with both synthetic αSyn fibrils (PFFs) and brain lysates from multiple system atrophy (MSA) patients but not αSyn monomers or human brain lysate controls. The induction-competent species in MSA lysates could be enriched by high-speed centrifugation suggesting that it is present as a high molecular weight aggregate. Furthermore, samples derived from brain lysates from Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB) patients also induced pS129 αSyn pathology, but required longer incubation times. Lastly, the potential of αSyn selective antibodies to immunodeplete induction-competent forms of αSyn from both PFF and synucleinopathy brain samples is described. The results demonstrate that antibodies targeting the C-terminal of αSyn are most effective for immunodepletion of pathology-inducing forms of αSyn from samples derived from human synucleinopathy brains. Furthermore, the data support the hypothesis that antibodies that recognize a C-terminal epitope and exhibit selectivity for oligomeric forms over monomeric forms of αSyn represent a desirable target for immunotherapy for synucleinopathy patients.

2015 ◽  
Vol 24 (10) ◽  
pp. 108506
Author(s):  
Qing-Tao Chen ◽  
Yong-Qing Huang ◽  
Jia-Rui Fei ◽  
Xiao-Feng Duan ◽  
Kai Liu ◽  
...  

2021 ◽  
Author(s):  
James E. Galvin ◽  
Stephanie Chrisphonte ◽  
Iris Cohen ◽  
Keri K. Greenfield ◽  
Michael J. Kleiman ◽  
...  

1970 ◽  
Vol 43 (6) ◽  
pp. 1332-1339 ◽  
Author(s):  
J. K. Clark ◽  
R. A. Scott

Abstract Dissolution of sulfur-cured, carbon black-loaded copolymers and their blends with cis-1,4-polybutadiene (PBD) are brought about by boiling with o-dichlorobenzene which contains a small amount of 2,2′-dibenzamidodiphenyl disulfide. The resulting slurries are subjected to a sequence of separations which include high-speed centrifugation to remove solids, and solvent precipitation followed by filtration to isolate the precipitates. The precipitates are washed with solvent to remove soluble organic materials followed by carbon disulfide washing to dissolve the polymers. Cast films of the polymers are obtained by evaporating the carbon disulfide washings onto sodium chloride discs. The infrared spectra of the cast films of these preparations are very similar to those of their respective polymers prior to loading and curing. Calculations for relative concentrations of bound styrene and PBD micro-structures permit nominal identification of the kinds of styrene-butadiene rubber and the amounts of cis-1,4-PBD used in a cured rubber formulation. Absorption bands used are near 3.35 μ for cis-1,4-PBD, 6.65 μ for bound styrene, 10.35 μ for trans-1,4-PBD; and 11.0 μ for vinyl-1,2-PBD. Efforts are being made to improve the data by using a grating infrared instrument and also to extend the calibrations to include other rubber blends.


2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2011 ◽  
Vol 320 ◽  
pp. 196-201
Author(s):  
Fei Tang ◽  
Li Jia Wen

Rotating cavitation is one of the most important problems in the development of modern high performance rocket pump inducers. In this paper, a numerical simulation of rotating cavitation phenomenon in a 2D blade cascade of liquid rocket engine inducer was carried out using a mixture model based on Rayleigh-Plesset equation. The purpose is to investigate the characterization of rotating cavitation in a high speed inducer. The results show that when sub-synchronous rotating cavitation occurs, the speed for the length of the blade surface cavitation is lower than the speed frequency of rotation shaft with the same direction. The external aspect is that the pressure at the upstream of blades changes synchronous. Thus, the generation of sub-synchronous rotating cavitation is closely related to the changes of flow angel which caused by the flow fluctuations. Hence, elimination of the flow rate redistribution among the flow channel can effectively suppress the occurrence of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document