scholarly journals Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica

2019 ◽  
Author(s):  
Huan Liu ◽  
Monireh Marsafari ◽  
Fang Wang ◽  
Li Deng ◽  
Peng Xu

AbstractAcetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and malonyl-CoA, represent a large family of biological compounds with diversified bioactivity. Harnessing microbial bioconversion is considered as a feasible approach to large-scale production of polyketides from renewable feedstocks. Most of the current polyketide production platform relied on the lengthy glycolytic steps to provide acetyl-CoA, which inherently suffers from complex regulation with metabolically-costly cofactor/ATP requirements. Using the simplest polyketide triacetic acid lactone (TAL) as a target molecule, we demonstrate that acetate uptake pathway in oleaginous yeast (Yarrowia lipolytica) could function as an acetyl-CoA shortcut to achieve metabolic optimality in producing polyketides. We identified the metabolic bottlenecks to rewire acetate utilization for efficient TAL production in Y. lipolytica, including generation of the driving force for acetyl-CoA, malonyl-CoA and NADPH. The engineered strain, with the overexpression of endogenous acetyl-CoA carboxylase (ACC1), malic enzyme (MAE1) and a bacteria-derived cytosolic pyruvate dehydrogenase (PDH), affords robust TAL production with titer up to 4.76 g/L from industrial glacier acetic acid in shake flasks, representing 8.5-times improvement over the parental strain. The acetate-to-TAL conversion ratio (0.149 g/g) reaches 31.9% of the theoretical maximum yield. The carbon flux through this acetyl-CoA metabolic shortcut exceeds the carbon flux afforded by the native acetyl-CoA pathways. Potentially, acetic acid could be manufactured in large-quantity at low-cost from Syngas fermentation or heterogenous catalysis (methanol carbonylation). This alternative carbon sources present a metabolic advantage over glucose to unleash intrinsic pathway limitations and achieve high carbon conversion efficiency and cost-efficiency. This work also highlights that low-cost acetic acid could be sustainably upgraded to high-value polyketides by oleaginous yeast species in an eco-friendly and cost-efficient manner.

2018 ◽  
Vol 115 (9) ◽  
pp. 2096-2101 ◽  
Author(s):  
Kelly A. Markham ◽  
Claire M. Palmer ◽  
Malgorzata Chwatko ◽  
James M. Wagner ◽  
Clare Murray ◽  
...  

Polyketides represent an extremely diverse class of secondary metabolites often explored for their bioactive traits. These molecules are also attractive building blocks for chemical catalysis and polymerization. However, the use of polyketides in larger scale chemistry applications is stymied by limited titers and yields from both microbial and chemical production. Here, we demonstrate that an oleaginous organism (specifically, Yarrowia lipolytica) can overcome such production limitations owing to a natural propensity for high flux through acetyl–CoA. By exploring three distinct metabolic engineering strategies for acetyl–CoA precursor formation, we demonstrate that a previously uncharacterized pyruvate bypass pathway supports increased production of the polyketide triacetic acid lactone (TAL). Ultimately, we establish a strain capable of producing over 35% of the theoretical conversion yield to TAL in an unoptimized tube culture. This strain also obtained an averaged maximum titer of 35.9 ± 3.9 g/L with an achieved maximum specific productivity of 0.21 ± 0.03 g/L/h in bioreactor fermentation. Additionally, we illustrate that a β-oxidation-related overexpression (PEX10) can support high TAL production and is capable of achieving over 43% of the theoretical conversion yield under nitrogen starvation in a test tube. Next, through use of this bioproduct, we demonstrate the utility of polyketides like TAL to modify commodity materials such as poly(epichlorohydrin), resulting in an increased molecular weight and shift in glass transition temperature. Collectively, these findings establish an engineering strategy enabling unprecedented production from a type III polyketide synthase as well as establish a route through O-functionalization for converting polyketides into new materials.


1992 ◽  
Vol 288 (3) ◽  
pp. 839-846 ◽  
Author(s):  
J B Spencer ◽  
P M Jordan

6-Methylsalicylic acid synthase has been isolated in homogeneous form from Penicillium patulum grown in liquid culture from a spore inoculum. The enzyme is highly susceptible to proteolytic degradation in vivo and in vitro, but may be stabilized during purification by incorporating proteinase inhibitors in the buffers. The enzyme exists as a homotetramer of M(r) 750,000, with a subunit M(r) of 180,000. 6-Methylsalicyclic acid synthase also accepts acetoacetyl-CoA as an alternative starter molecule to acetyl-CoA. The enzyme also catalyses the formation of small amounts of triacetic acid lactone as an oligatory by-product of the reaction. In the absence of NADPH, triacetic acid lactone is the exclusive enzymic product, being formed at 10% of the rate of 6-methylsalicylic acid. The enzyme is inactivated by 1,3-dibromopropan-2-one, leading to the formation of cross-linked dimers similar to that observed with type I fatty acid synthases. Acetyl-CoA protects the enzyme against the inactivation and inhibits dimer formation. An adaptation of the purification method for 6-methylsalicylic acid synthase may be used for the isolation of fatty acid sythase from Penicillium patulum.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Annapurna Kamineni ◽  
Andrew L. Consiglio ◽  
Kyle MacEwen ◽  
Shuyan Chen ◽  
Gamuchirai Chifamba ◽  
...  

Abstract Background Lipids are important precursors in the biofuel and oleochemical industries. Yarrowia lipolytica is among the most extensively studied oleaginous microorganisms and has been a focus of metabolic engineering to improve lipid production. Yield improvement, through rewiring of the central carbon metabolism of Y. lipolytica from glucose to the lipid precursor acetyl-CoA, is a key strategy for achieving commercial success in this organism. Results Building on YB-392, a Y. lipolytica isolate known for stable non-hyphal growth and low citrate production with demonstrated potential for high lipid accumulation, we assembled a heterologous pathway that redirects carbon flux from glucose through the pentose phosphate pathway (PPP) to acetyl-CoA. We used phosphofructokinase (Pfk) deletion to block glycolysis and expressed two non-native enzymes, phosphoketolase (Xpk) and phosphotransacetylase (Pta), to convert PPP-produced xylulose-5-P to acetyl-CoA. Introduction of the pathway in a pfk deletion strain that is unable to grow and accumulate lipid from glucose in defined media ensured maximal redirection of carbon flux through Xpk/Pta. Expression of Xpk and Pta restored growth and lipid production from glucose. In 1-L bioreactors, the engineered strains recorded improved lipid yield and cell-specific productivity by up to 19 and 78%, respectively. Conclusions Yields and cell-specific productivities are important bioprocess parameters for large-scale lipid fermentations. Improving these parameters by engineering the Xpk/Pta pathway is an important step towards developing Y. lipolytica as an industrially preferred microbial biocatalyst for lipid production.


2020 ◽  
Vol 8 (1) ◽  
pp. 81
Author(s):  
Muhammad Safiullah Virk ◽  
Rabia Ramzan ◽  
Muhammad Abdulrehman Virk ◽  
Xi Yuan ◽  
Fusheng Chen

Monascus species have been used for the production of many industrially and medically important metabolites, most of which are polyketides produced by the action of polyketide synthases that use acetyl-CoA and malonyl-CoA as precursors, and some of them are derived from acetate. In this study the effects of acetic acid, and two kinds of acetates, sodium acetate and ammonium acetate at different concentrations (0.1%, 0.25% and 0.5%) on the morphologies, biomasses, and six major Monascus pigments (MPs) of M. ruber M7 were investigated when M7 strain was cultured on potato dextrose agar (PDA) at 28 °C for 4, 8, 12 days. The results showed that all of the added acetate species significantly affected eight above-mentioned parameters. In regard to morphologies, generally the colonies transformed from a big orange fleecy ones to a small compact reddish ones, or a tightly-packed orange ones without dispersed mycelia with the increase of additives concentration. About the biomass, addition of ammonium acetate at 0.1% increased the biomass of M. ruber M7. With respect to six MPs, all acetate species can enhance pigment production, and ammonium acetate has the most significant impacts. Production of monascin and ankaflavin had the highest increase of 11.7-fold and 14.2-fold in extracellular contents at the 8th day when 0.1% ammonium acetate was supplemented into PDA. Intracellular rubropunctatin and monascorubrin contents gained 9.6 and 6.46-fold at the 8th day, when 0.1% ammonium acetate was added into PDA. And the extracellular contents of rubropunctamine and monascorubramine were raised by 1865 and 4100-fold at the 4th day when M7 grew on PDA with 0.5% ammonium acetate.


1979 ◽  
Vol 42 (10) ◽  
pp. 810-814 ◽  
Author(s):  
G. MAURICE GAUCHER

A brief introduction to the mycotoxin, patulin is followed by a summary of the early contributions which demonstrated that patulin and its precursor, 6-methylsalicylic acid were derived from acetyl-CoA and hence are polyketides. The polyketide lactones, triacetic acid lactone, mycophenolic acid, patulin, penicillic acid and multicolic acid are compared with respect to their biosynthetic origins and the obscured sequence of acetate units in the latter three lactones is discussed. The current status of the patulin biosynthetic pathway is described with special emphasis on recent findings which have altered the late or post-gentisaldehyde portion of the pathway. This new appreciation of the patulin pathway is then extrapolated to the closely related γ-lactones, penicillic acid and multicolic acid. Pathways analogous to that of patulin are proposed for these two lactones and are discussed. These biosynthetic relationships are then related to the co-occurrence of some of these lactones in cultures of the same fungus.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Feng Yao ◽  
Shun-Cheng Liu ◽  
Dan-Ni Wang ◽  
Zhi-Jie Liu ◽  
Qiang Hua ◽  
...  

ABSTRACT Limonene, a valuable cyclic monoterpene, has been broadly studied in recent decades due to its wide application in the food, cosmetics and pharmaceutical industries. Engineering of the yeast Yarrowia lipolytica for fermentation of renewable biomass lignocellulosic hydrolysate may reduce the cost and improve the economics of bioconversion for the production of limonene. The aim of this study was to engineer Y. lipolytica to produce limonene from xylose and low-cost lignocellulosic feedstock. The heterologous genes XR and XDH and native gene XK encoding xylose assimilation enzymes, along with the heterologous genes tNDPS1 and tLS encoding orthogonal limonene biosynthetic enzymes, were introduced into the Po1f strain to facilitate xylose fermentation to limonene. The initially developed strain produced 0.44 mg/L of limonene in 72 h with 20 g/L of xylose. Overexpression of genes from the mevalonate pathway, including HMG1 and ERG12, significantly increased limonene production from xylose to ∼9.00 mg/L in 72 h. Furthermore, limonene production peaked at 20.57 mg/L with 50% hydrolysate after 72 h when detoxified lignocellulosic hydrolysate was used. This study is the first to report limonene production by yeast from lignocellulosic feedstock, and these results indicate the initial steps toward economical and sustainable production of isoprenoids from renewable biomass by engineered Y. lipolytica.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Sun ◽  
Jae Won Lee ◽  
Sangdo Yook ◽  
Stephan Lane ◽  
Ziqiao Sun ◽  
...  

AbstractPlant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Yixin Liu ◽  
Zhen Li ◽  
Yutong Feng ◽  
Juming Yao

AbstractConductive yarn is an important component and connector of electronic and intelligent textiles, and with the development of high-performance and low-cost conductive yarns, it has attracted more attention. Herein, a simple, scalable sizing process was introduced to prepare the graphene-coated conductive cotton yarns. The electron conductive mechanism of fibers and yarns were studied by the percolation and binomial distribution theory, respectively. The conductive paths are formed due to the conductive fibers' contact with each other, and the results revealed that the connection probability of the fibers in the yarn (p) is proportional to the square of the fibers filling coefficient (φ) as p ∝ φ2. The calculation formula of the staple spun yarn resistance can be derived from this conclusion and verified by experiments, which further proves the feasibility of produce conductive cotton yarns by sizing process.


2020 ◽  
Vol 9 (1) ◽  
pp. 751-759 ◽  
Author(s):  
Xinxin Lian ◽  
Yuanjiang Lv ◽  
Haoliang Sun ◽  
David Hui ◽  
Guangxin Wang

AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.


Sign in / Sign up

Export Citation Format

Share Document