scholarly journals Midkine-a is required for cell cycle progression of Müller glia during neuronal regeneration

2019 ◽  
Author(s):  
Mikiko Nagashima ◽  
Travis S. D’Cruz ◽  
Doneen Hesse ◽  
Christopher J. Sifuentes ◽  
Pamela A. Raymond ◽  
...  

SummaryIn zebrafish, Müller glia function as intrinsic retinal stem cells that can regenerate ablated neurons. Understanding the mechanisms governing neuronal stem cells may provide clues to regenerate neurons in mammals. We report that in Müller glia the cytokine/growth factor, Midkine-a, functions as a core autocrine regulator of the cell cycle. Utilizing midkine-a mutants, we determined that Midkine-a regulates elements of an Id2a-retinoblastoma network in reprogrammed Müller glia that controls the expression of cell cycle genes and is required for transition from G1 to S phases of the cell cycle. In mutants, Müller glia that fail to divide undergo reactive gliosis, a pathological hallmark of Müller glia in mammals. Finally, we show that activation of the Midkine-a receptor, ALK, is required for Müller glia proliferation. These data provide mechanistic insights into Müller glia stem cells in the vertebrate retina and suggest avenues for eliciting neuronal regeneration in mammals.

2019 ◽  
Vol 40 (6) ◽  
pp. 1232-1247 ◽  
Author(s):  
Mikiko Nagashima ◽  
Travis S. D'Cruz ◽  
Antoinette E. Danku ◽  
Doneen Hesse ◽  
Christopher Sifuentes ◽  
...  

2015 ◽  
Vol 5 (5) ◽  
pp. 702-715 ◽  
Author(s):  
Rouzanna Istvánffy ◽  
Baiba Vilne ◽  
Christina Schreck ◽  
Franziska Ruf ◽  
Charlotta Pagel ◽  
...  

2003 ◽  
Vol 20 (3) ◽  
pp. 195-205 ◽  
Author(s):  
Chang-Ho EUN ◽  
Suk-Min KO ◽  
Katsumi HIGASHI ◽  
Dennis YEO ◽  
Yoshikatsu MATSUBAYASHI ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3327
Author(s):  
Zhixiang Wang

The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.


2010 ◽  
Vol 19 (4) ◽  
pp. 453-460 ◽  
Author(s):  
Peter J. Quesenberry ◽  
Gerri J. Dooner ◽  
Michael Del Tatto ◽  
Gerald A. Colvin ◽  
Kevin Johnson ◽  
...  

1998 ◽  
Vol 9 (6) ◽  
pp. 1449-1463 ◽  
Author(s):  
Gian Maria Fimia ◽  
Vanesa Gottifredi ◽  
Barbara Bellei ◽  
Maria Rosaria Ricciardi ◽  
Agostino Tafuri ◽  
...  

It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document