embryogenic cells
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 2)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Mohamed Elhiti ◽  
Claudio Stasolla

Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the explants respond to inductive signals (mostly plant growth regulators, PRGs), and de-differentiate into embryogenic cells. Such cells, “canalized” into the embryogenic developmental pathway, are able to generate embryos comparable in structure and physiology to their in vivo counterparts. Genomic and transcriptomic studies have identified several pathways governing the initial stages of the embryogenic process. In this review, the authors emphasize the importance of the developmental signals required for the progression of embryo development, starting with the de-differentiation of somatic cells and culminating with tissue patterning during the formation of the embryo body. The action and interaction of PGRs are highlighted, along with the participation of master regulators, mostly transcription factors (TFs), and proteins involved in stress responses and the signal transduction required for the initiation of the embryogenic process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Momi Tsuruta ◽  
Tsuyoshi E. Maruyama ◽  
Saneyoshi Ueno ◽  
Yoichi Hasegawa ◽  
Yoshinari Moriguchi

Pollen allergy caused by sugi (Japanese cedar, Cryptomeria japonica) is a serious problem in Japan. One of the measures against pollinosis is the use of male-sterile plants (MSPs; pollen-free plants). In this context, the development of a novel technique for the efficient production of sugi MSPs, which combines marker-assisted selection (MAS) with somatic embryogenesis (SE), was recently reported by our research group. To improve the efficiency of MSP production, in this paper we report improved MAS for male-sterile individuals from embryogenic cells, cotyledonary embryos, and somatic plants of sugi using a newly developed marker in the form of the causative mutation of MS1 itself, selecting individuals with ms1-1 and ms1-2 male-sterile mutations. We also describe simplified methods for extracting DNA from different plant materials and for MAS using LAMP diagnostics. Finally, we show that MAS can be efficiently performed using the one-step indel genotyping (ING) marker developed in this study and using InstaGene for DNA extraction. The combination of SE and 100% accurate marker selection during the embryogenic cell stage enables the mass production of MS1 male-sterile sugi seedlings.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1244
Author(s):  
Riina Muilu-Mäkelä ◽  
Jaana Vuosku ◽  
Hely Häggman ◽  
Tytti Sarjala

Polyamines (PA) have a protective role in maintaining growth and development in Scots pine during abiotic stresses. In the present study, a controlled liquid Scots pine embryogenic cell culture was used for studying the responses of PA metabolism related to potassium deficiency. The transcription level regulation of PA metabolism led to the accumulation of putrescine (Put). Arginine decarboxylase (ADC) had an increased expression trend under potassium deficiency, whereas spermidine synthase (SPDS) expression decreased. Generally, free spermidine (Spd) and spermine (Spm)/ thermospermine (t-Spm) contents were kept relatively stable, mostly by the downregulation of polyamine oxidase (PAO) expression. The low potassium contents in the culture medium decreased the potassium content of the cells, which inhibited cell mass growth, but did not affect cell viability. The reduced growth was probably caused by repressed metabolic activity and cell division, whereas there were no signs of H2O2-induced oxidative stress or increased cell death. The low intracellular content of K+ decreased the content of Na+. The decrease in the pH of the culture medium indicated that H+ ions were pumped out of the cells. Altogether, our findings emphasize the specific role(s) of Put under potassium deficiency and strict developmental regulation of PA metabolism in Scots pine.


2021 ◽  
Vol 22 (4) ◽  
pp. 2174
Author(s):  
Liang Lin ◽  
Junchao Ma ◽  
Qin Ai ◽  
Hugh W. Pritchard ◽  
Weiqi Li ◽  
...  

Plant species conservation through cryopreservation using plant vitrification solutions (PVS) is based in empiricism and the mechanisms that confer cell integrity are not well understood. Using ESI-MS/MS analysis and quantification, we generated 12 comparative lipidomics datasets for membranes of embryogenic cells (ECs) of Magnolia officinalis during cryogenic treatments. Each step of the complex PVS-based cryoprotocol had a profoundly different impact on membrane lipid composition. Loading treatment (osmoprotection) remodeled the cell membrane by lipid turnover, between increased phosphatidic acid (PA) and phosphatidylglycerol (PG) and decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PA increase likely serves as an intermediate for adjustments in lipid metabolism to desiccation stress. Following PVS treatment, lipid levels increased, including PC and PE, and this effectively counteracted the potential for massive loss of lipid species when cryopreservation was implemented in the absence of cryoprotection. The present detailed cryobiotechnology findings suggest that the remodeling of membrane lipids and attenuation of lipid degradation are critical for the successful use of PVS. As lipid metabolism and composition varies with species, these new insights provide a framework for technology development for the preservation of other species at increasing risk of extinction.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 199
Author(s):  
Milica D. Bogdanović ◽  
Katarina B. Ćuković ◽  
Angelina R. Subotić ◽  
Milan B. Dragićević ◽  
Ana D. Simonović ◽  
...  

Somatic embryogenesis (SE) is a developmental process during which plant somatic cells, under suitable conditions, produce embryogenic cells that develop into somatic embryos (se). SE is the most important method for plant propagation in vitro, having both fundamental and applicative significance. SE can be induced from different tissues and organs, but when se are used as explants, the process is recognized as secondary or cyclic SE. We induced secondary SE in Centaurium erythraea by application of 2,4-dichlorophenoxyacetic acid (2,4-D) and N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU). A medium containing 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU was optimal in terms of the number of primary SE explants forming se, the number of well-developed se per explant, and morphological appearance of the obtained se. These concentrations allowed SE to progress through three cycles, whereas at higher concentrations of 0.2 mgL−1 2,4-D and 0.5 mgL−1 CPPU, only two cycles were achieved. Histological analysis revealed that secondary se are formed both directly and indirectly. Secondary SE readily germinated and converted into plantlets. Induction of cyclic SE contributes to the conservation efforts of this endangered medicinal plant and expands the spectrum of in vitro developmental pathways described in centaury—an emerging model in developmental biology.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fariba Shahmir ◽  
K. Peter Pauls

Microspores of Brassica napus can be diverted from normal pollen development into embryogenesis by treating them with a mild heat shock. As microspore embryogenesis closely resembles zygotic embryogenesis, it is used as model for studying the molecular mechanisms controlling embryo formation. A previous study comparing the transcriptomes of three-day-old sorted embryogenic and pollen-like (non-embryogenic) microspores identified a gene homologous to AT1G74730 of unknown function that was upregulated 8-fold in the embryogenic cells. In the current study, the gene was isolated and sequenced from B. napus and named BnMicEmUP (B. napus microspore embryogenesis upregulated gene). Four forms of BnMicEmUP mRNA and three forms of genomic DNA were identified. BnMicEmUP2,3 was upregulated more than 7-fold by day 3 in embryogenic microspore cultures compared to non-induced cultures. BnMicEmUP1,4 was highly expressed in leaves. Transient expression studies of BnMicEmUP3::GFP fusion protein in Nicotiana benthamiana and in stable Arabidopsis transgenics showed that it accumulates in chloroplasts. The features of the BnMicEmUP protein, which include a chloroplast targeting region, a basic region, and a large region containing 11 complete leucine-rich repeats, suggest that it is similar to a bZIP PEND (plastid envelope DNA-binding protein) protein, a DNA binding protein found in the inner envelope membrane of developing chloroplasts. Here, we report that the BnMicEmUP3 overexpression in Arabidopsis increases the sensitivity of seedlings to exogenous abscisic acid (ABA). The BnMicEmUP proteins appear to be transcription factors that are localized in plastids and are involved in plant responses to biotic and abiotic environmental stresses; as well as the results obtained from this study can be used to improve crop yield.


HortScience ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 703-708
Author(s):  
Tao Dong ◽  
Fang-cheng Bi ◽  
Yong-hong Huang ◽  
Wei-di He ◽  
Gui-ming Deng ◽  
...  

An efficient biolistic transformation system of banana combined with a liquid medium selection system was developed during this study. An embryogenic cell suspension (ECS) of Musa acuminata cv. Baxi (AAA) was bombarded with a particle delivery system. After 7 days of restoring culture in liquid M2 medium, embryogenic cells were transferred to a liquid selection M2 medium supplemented with 10 μg/mL hygromycin for resistance screening. The untransformed cell clusters were inhibited or killed, and a small number of transformants proliferated in the liquid selection medium. After the 0th, first, second, and third generation of antibiotic screening, there were 0, 65, 212, and 320, respectively, vitality-resistant buds obtained from a 0.5-mL packed cell volume (PCV) of embryogenic cell suspension. The β-glucuronidase (GUS) staining, polymerase chain reaction (PCR) analysis, and Southern blot hybridization results all demonstrated a 100% positive rate of regenerated resistant seedlings. Interestingly, the number of buds obtained through third-generation screening was almost equal to that obtained from the original ECS in M2 medium without antibiotics. These results suggested that the liquid medium selection system facilitated the proliferation of a positive transgenic ECS, which significantly improved the regeneration rate of transformants. This protocol is suitable for the genetic transformation of all banana genotypes and is highly advantageous to varieties with low callusing potential.


2020 ◽  
Vol 71 (9) ◽  
pp. 2612-2628 ◽  
Author(s):  
Kamila Godel-Jedrychowska ◽  
Katarzyna Kulinska-Lukaszek ◽  
Anneke Horstman ◽  
Mercedes Soriano ◽  
Mengfan Li ◽  
...  

Abstract Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.


2019 ◽  
Vol 47 (4) ◽  
pp. 1348-1358
Author(s):  
Ruyue JING ◽  
Peilan WANG ◽  
Zhen HUANG ◽  
Zhihui LI

Histocytological studies were conducted on primary, secondary, and malformed embryos produced during somatic embryogenesis of Cinnamomum camphora L. to better understand its development. Exploring its callus types and structures provided a theoretical basis for clarifying the mechanism of somatic embryogenesis, which may shed light on the mechanism of zygotic embryogenesis. We used immature zygotic embryos as explants to induce somatic embryos, forming many embryogenic calli that differentiated into mature somatic embryos. Our results showed that somatic embryogenesis of C. camphora was similar to that of zygotic embryos. We have been dedifferentiated four types of callus. Compared with non-embryogenic cells, embryogenic cells had a closer arrangement, larger nucleus, thicker cytoplasm, more starch granules and easier to stain into black. Somatic embryogenesis had two pathways: direct (predominate) and indirect (rare). Embryogenic cells of C. camphora could have either an internal or external origin, the latter being primary, for which occurrence sites include epidermis and near-epidermis (little internally). Mostly arising from single cells, C. camphora follows two developmental pathways: single-cell equal as opposed to unequal, wherein both divide to form multi-cell proembryos. However, multicellular origins can occasionally occur and feature physiological isolation during somatic embryo development. This development has four embryo stages: globular, heart-shaped, torpedo, and cotyledon, with procambium cells apparent in globular embryos and late cotyledons forming “Y-shaped” vascular bundles. Secondary embryos were present in all stages, directly occurring on primary embryo’s germ and radicle end surfaces. We conclude that secondary and primary embryos of C. camphora undergo similar developmental processes. At the same time, conjoined cotyledon embryos and morphological abnormal embryos were found, with an internal origin more likely to generate abnormal embryos.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2019 ◽  
Vol 168 (4) ◽  
pp. 845-875 ◽  
Author(s):  
Inaê M. Araújo Silva‐Cardoso ◽  
Filipe S. Meira ◽  
Ana C. M. M. Gomes ◽  
Jonny E. Scherwinski‐Pereira

Sign in / Sign up

Export Citation Format

Share Document