scholarly journals Defining the Subcellular Distribution and Metabolic Channeling of Phosphatidylinositol

2019 ◽  
Author(s):  
Joshua G. Pemberton ◽  
Yeun Ju Kim ◽  
Nivedita Sengupta ◽  
Andrea Eisenreichova ◽  
Daniel J. Toth ◽  
...  

AbstractPhosphatidylinositol (PtdIns) is an essential structural component of eukaryotic membranes that also serves as the common precursor for polyphosphoinositide (PPIn) lipids. Despite the recognized importance of PPIn species for signal transduction and membrane homeostasis, there is still a limited understanding of how the dynamic regulation of PtdIns synthesis and transport contributes to the turnover of PPIn pools. To address these shortcomings, we capitalized on the substrate selectivity of a bacterial enzyme, PtdIns-specific PLC, to establish a molecular toolbox for investigations of PtdIns distribution and availability within intact cells. In addition to its presence within the ER, our results reveal low steady-state levels of PtdIns within the plasma membrane (PM) and endosomes as well as a relative enrichment of PtdIns within the cytosolic leaflets of the Golgi complex, peroxisomes, and outer mitochondrial membranes. Kinetic studies also demonstrate the requirement for sustained PtdIns supply from the ER for the maintenance of monophosphorylated PPIn species within the PM, Golgi complex, and endosomal compartments.SummaryPemberton et al. characterize a molecular toolbox for the visualization and manipulation of phosphatidylinositol (PtdIns) within intact cells. Results using these approaches define the steady-state distribution of PtdIns across subcellular membrane compartments as well as provide new insights into the relationship between PtdIns availability and polyphosphoinositide turnover.


2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Joshua G. Pemberton ◽  
Yeun Ju Kim ◽  
Jana Humpolickova ◽  
Andrea Eisenreichova ◽  
Nivedita Sengupta ◽  
...  

Phosphatidylinositol (PI) is an essential structural component of eukaryotic membranes that also serves as the common precursor for polyphosphoinositide (PPIn) lipids. Despite the recognized importance of PPIn species for signal transduction and membrane homeostasis, there is still a limited understanding of the relationship between PI availability and the turnover of subcellular PPIn pools. To address these shortcomings, we established a molecular toolbox for investigations of PI distribution within intact cells by exploiting the properties of a bacterial enzyme, PI-specific PLC (PI-PLC). Using these tools, we find a minor presence of PI in membranes of the ER, as well as a general enrichment within the cytosolic leaflets of the Golgi complex, peroxisomes, and outer mitochondrial membrane, but only detect very low steady-state levels of PI within the plasma membrane (PM) and endosomes. Kinetic studies also demonstrate the requirement for sustained PI supply from the ER for the maintenance of monophosphorylated PPIn species within the PM, Golgi complex, and endosomal compartments.



1997 ◽  
Vol 273 (4) ◽  
pp. G913-G919 ◽  
Author(s):  
U. Sundaram ◽  
S. Wisel ◽  
V. M. Rajendren ◽  
A. B. West

In a rabbit model of chronic ileal inflammation, we previously demonstrated that coupled NaCl absorption was reduced because of an inhibition of Cl−/[Formula: see text]but not Na+/H+exchange on the brush-border membrane (BBM) of villus cells. In this study we determined the alterations in Na+-stimulated glucose [Na+- O-methyl-d-glucose (Na+-OMG)] absorption during chronic ileitis. Na+-OMG uptake was reduced in villus cells from the chronically inflamed ileum. Na+-K+-adenosinetriphosphatase (ATPase), which provides the favorable Na+gradient for this cotransporter in intact cells, was found to be reduced also. However, in villus cell BBM vesicles from the inflamed ileum Na+-OMG uptake was reduced as well, suggesting an effect at the level of the cotransporter itself. Kinetic studies demonstrated that Na+-OMG uptake in the inflamed ileum was inhibited by a decrease in the maximal rate of uptake for OMG without a change in the affinity. Analysis of steady-state mRNA and immunoreactive protein levels of this cotransporter demonstrates reduced expression. Thus Na+-glucose cotransport was inhibited in the chronically inflamed ileum, and the inhibition was secondary to a decrease in the number of cotransporters and not solely secondary to an inhibition of Na+-K+-ATPase or altered affinity for glucose.



1993 ◽  
Vol 265 (4) ◽  
pp. C901-C917 ◽  
Author(s):  
R. W. Van Dyke

Both lysosomes and endosomes are acidified by an electrogenic proton pump, although studies in intact cells indicate that the steady-state internal pH (pHi) of lysosomes is more acid than that of endosomes. We undertook the present study to examine in detail the acidification mechanism of purified rat liver secondary lysosomes and to compare it with that of a population of early endosomes. Both endosomes and lysosomes exhibited ATP-dependent acidification, but proton influx rates were 2.4- to 2.7-fold greater for endosomes than for lysosomes because of differences in both buffering capacity and acidification rates, suggesting that endosomes exhibited greater numbers or rates of proton pumps. Lysosomes, however, exhibited a more acidic steady-state pHi due in part to a slower proton leak rate. Changes in medium Cl- increased acidification rates of endosomes more than lysosomes, and the lysosome ATP-dependent interior-positive membrane potential was only partially eliminated by high-Cl- medium. Permeability studies suggested that lysosomes were less permeable to Na+, Li+, and Cl- and more permeable to K+ and PO4(2-) than endosomes. Na-K-adenosine-triphosphatase did not appear to regulate acidification of either vesicle type. Endosome and lysosome acidification displayed similar inhibition profiles to N-ethylmaleimide, dicyclohexyl-carbodiimide, and vanadate, although lysosomes were somewhat more sensitive [concentration producing 50% maximal inhibition (IC50) 1 nM] to bafilomycin A1 than endosomes (IC50 7.6 nM). Oligomycin (1.5-3 microM) stimulated lysosome acidification due to shunting of membrane potential. Overall, acidification of endosomes and lysosomes was qualitatively similar but quantitatively somewhat different, possibly related to differences in the density or rate of proton pumps as well as vesicle permeability to protons, anions, and other cations.



Sign in / Sign up

Export Citation Format

Share Document