scholarly journals Non-axisymmetric shapes of biological membranes from locally induced curvature

2019 ◽  
Author(s):  
Yannick A. D. Omar ◽  
Amaresh Sahu ◽  
Roger A. Sauer ◽  
Kranthi K. Mandadapu

In various biological processes such as endocytosis and caveolae formation, the cell membrane is locally deformed into curved configurations. Previous theoretical and computational studies to understand membrane morphologies resulting from locally induced curvature are often limited to axisymmetric shapes, which severely restricts the physically admissible morphologies. Under the restriction of axisymmetry, past efforts predict that the cell membrane buds at low resting tensions and stalls at a flat pit at high resting tensions. In this work, we lift the restriction of axisymmetry by employing recent theoretical and numerical advances to understand arbitrarily curved and deforming lipid bilayers. Our non-axisymmetric morphologies reveal membrane morphologies which agree well with axisymmetric studies—however only if the resting tension of the membrane is low. When the resting tension is moderate to high, we show that (i) axisymmetric invaginations are unstable; and (ii) non-axisymmetric ridge-shaped structures are energetically favorable. We further study the dynamical effects resulting from the interplay between intramembrane viscous flow and induced curvature, and find the rate at which the locally induced curvature increases is a key determinant in the formation of ridges. In particular, we show that axisymmetric buds are favored when the induced curvature is rapidly increased, while non-axisymmetric ridges are favored when the curvature is slowly increased: The rate of change of induced curvature affects the intramembrane viscous flow of lipids, which can impede the membrane’s ability to transition into ridges. We conclude that the appearance of non-axisymmetric ridges indicates that axisymmetry cannot be generally assumed when understanding processes involving locally induced curvature. Our results hold potentially relevant implications for biological processes such as endocytosis, and physical phenomena like phase separation in lipid bilayers.

2015 ◽  
Vol 12 (106) ◽  
pp. 20150197 ◽  
Author(s):  
Ramon Reigada ◽  
Francesc Sagués

The interaction of the two leaflets of the plasmatic cell membrane is conjectured to play an important role in many cell processes. Experimental and computational studies have investigated the mechanisms that modulate the interaction between the two membrane leaflets. Here, by means of coarse-grained molecular dynamics simulations, we show that the addition of a small and polar compound such as chloroform alters interleaflet coupling by promoting domain registration. This is interpreted in terms of an entropic gain that would favour frequent chloroform commuting between the two leaflets. The implication of this effect is discussed in relation to the general anaesthetic action.


Author(s):  
Neng-Bo He ◽  
S.W. Hui

Monolayers and planar "black" lipid membranes have been widely used as models for studying the structure and properties of biological membranes. Because of the lack of a suitable method to prepare these membranes for electron microscopic observation, their ultrastructure is so far not well understood. A method of forming molecular bilayers over the holes of fine mesh grids was developed by Hui et al. to study hydrated and unsupported lipid bilayers by electron diffraction, and to image phase separated domains by diffraction contrast. We now adapted the method of Pattus et al. of spreading biological membranes vesicles on the air-water interfaces to reconstitute biological membranes into unsupported planar films for electron microscopic study. hemoglobin-free human erythrocyte membrane stroma was prepared by hemolysis. The membranes were spreaded at 20°C on balanced salt solution in a Langmuir trough until a surface pressure of 20 dyne/cm was reached. The surface film was repeatedly washed by passing to adjacent troughs over shallow partitions (fig. 1).


2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


2016 ◽  
Vol 27 (3) ◽  
pp. 421-423
Author(s):  
Daniel Branton

In 1961, the development of an improved freeze-etching (FE) procedure to prepare rapidly frozen biological cells or tissues for electron microscopy raised two important questions. How does a frozen cell membrane fracture? What do the extensive face views of the cell’s membranes exposed by the fracture process of FE tell us about the overall structure of biological membranes? I discovered that all frozen membranes tend to split along weakly bonded lipid bilayers. Consequently, the fracture process exposes internal membrane faces rather than either of the membrane’s two external surfaces. During etching, when ice is allowed to sublime after fracturing, limited regions of the actual membrane surfaces are revealed. Examination of the fractured faces and etched surfaces provided strong evidence that biological membranes are organized as lipid bilayers with some proteins on the surface and other proteins extending through the bilayer. Membrane splitting made it possible for electron microscopy to show the relative proportion of a membrane’s area that exists in either of these two organizational modes.


2021 ◽  
Vol 55 (S1) ◽  
pp. 135-160

Cells are constantly exposed to the risk of volume perturbation under physiological conditions. The increase or decrease in cell volume accompanies intracellular changes in cell membrane tension, ionic strength/concentration and macromolecular crowding. To avoid deleterious consequences caused by cell volume perturbation, cells have volume recovery systems that regulate osmotic water flow by transporting ions and organic osmolytes across the cell membrane. Thus far, a number of biomolecules have been reported to regulate cell volume. However, the question of how cells sense volume change and modulate volume regulatory systems is not fully understood. Recently, the existence and significance of phaseseparated biomolecular condensates have been revealed in numerous physiological events, including cell volume perturbation. In this review, we summarize the current understanding of cell volume-sensing mechanisms, introduce recent studies on biomolecular condensates induced by cell volume change and discuss how biomolecular condensates contribute to cell volume sensing and cell volume maintenance. In addition to previous studies of biochemistry, molecular biology and cell biology, a phase separation perspective will allow us to understand the complicated volume regulatory systems of cells.


2019 ◽  
Vol 9 (6) ◽  
pp. 20190064 ◽  
Author(s):  
Yang Ding ◽  
Julyan H. E. Cartwright ◽  
Silvana S. S. Cardoso

Concentration cycles are important for bonding of basic molecular building components at the emergence of life. We demonstrate that oscillations occur intrinsically in precipitation reactions when coupled with fluid mechanics in self-assembled precipitate membranes, such as at submarine hydrothermal vents. We show that, moreover, the flow of ions across one pore in such a prebiotic membrane is larger than that across one ion channel in a modern biological cell membrane, suggesting that proto-biological processes could be sustained by osmotic flow in a less efficient prebiotic environment. Oscillations in nanoreactors at hydrothermal vents may be just right for these warm little pores to be the cradle of life.


2019 ◽  
Vol 15 (5) ◽  
pp. 2913-2924 ◽  
Author(s):  
Chi Hang Tse ◽  
Jeffrey Comer ◽  
Simon Kit Sang Chu ◽  
Yi Wang ◽  
Christophe Chipot

Sign in / Sign up

Export Citation Format

Share Document