scholarly journals StructureDistiller: Structural relevance scoring increases resilience of contact maps to false positive predictions

2019 ◽  
Author(s):  
Sebastian Bittrich ◽  
Michael Schroeder ◽  
Dirk Labudde

AbstractProtein folding and structure prediction are two sides of the same coin. We propose contact maps and the related techniques of constraint-based structure reconstruction as unifying aspect of both processes. The presented Structural Relevance (SR) score quantifies the contribution of individual contacts and residues to structural integrity.It is demonstrated that entries of a contact map are not equally relevant for structural integrity. Structure prediction methods should explicitly consider the most relevant contacts for optimal performance because they effectively double resilience toward false positively predicted contacts. Furthermore, knowledge of the most relevant contacts significantly increases reconstruction fidelity on sparse contact maps by 0.4 Å.Protein folding is commonly characterized with spatial and temporal resolution: some residues are Early Folding while others are Highly Stable with respect to unfolding events. Using the proposed SR score, we demonstrate that folding initiation and structure stabilization are distinct processes.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sebastian Bittrich ◽  
Michael Schroeder ◽  
Dirk Labudde

AbstractProtein folding and structure prediction are two sides of the same coin. Contact maps and the related techniques of constraint-based structure reconstruction can be considered as unifying aspects of both processes. We present the Structural Relevance (SR) score which quantifies the information content of individual contacts and residues in the context of the whole native structure. The physical process of protein folding is commonly characterized with spatial and temporal resolution: some residues are Early Folding while others are Highly Stable with respect to unfolding events. We employ the proposed SR score to demonstrate that folding initiation and structure stabilization are subprocesses realized by distinct sets of residues. The example of cytochrome c is used to demonstrate how StructureDistiller identifies the most important contacts needed for correct protein folding. This shows that entries of a contact map are not equally relevant for structural integrity. The proposed StructureDistiller algorithm identifies contacts with the highest information content; these entries convey unique constraints not captured by other contacts. Identification of the most informative contacts effectively doubles resilience toward contacts which are not observed in the native contact map. Furthermore, this knowledge increases reconstruction fidelity on sparse contact maps significantly by 0.4 Å.


2020 ◽  
Author(s):  
Rahmatullah Roche ◽  
Sutanu Bhattacharya ◽  
Debswapna Bhattacharya

AbstractCrystallography and NMR system (CNS) is currently the de facto standard for fragment-free ab initio protein folding from inter-residue distance or contact maps. Despite its widespread use in protein structure prediction, CNS is a decade-old macromolecular structure determination system that was originally developed for solving macromolecular geometry from experimental restraints as opposed to predictive modeling driven by interaction map data. As such, the adaptation of the CNS experimental structure determination protocol for ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of computational protein structure prediction. In this paper, we propose a new CNS-free hierarchical structure modeling method called DConStruct for folding both soluble and membrane proteins driven by distance and contact information. Rigorous experimental validation shows that DConStruct attains much better reconstruction accuracy than CNS when tested with the same input contact map at varying contact thresholds. The hierarchical modeling with iterative self-correction employed in DConStruct scales at a much higher degree of folding accuracy than CNS with the increase in contact thresholds, ultimately approaching near-optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy of DConStruct can be further improved by exploiting distance-based hybrid interaction maps at tri-level thresholding, as demonstrated by the better performance of our method in folding difficult free modeling targets from the 12th and 13th rounds of the Critical Assessment of techniques for protein Structure Prediction (CASP) experiments compared to several popular CNS- and fragment-based approaches, some of which even using much finer-grained distance maps than ours. Additional large-scale benchmarking shows that DConStruct can significantly improve the folding accuracy of membrane proteins compared to a CNS-based approach. These results collectively demonstrate the feasibility of greatly improving the accuracy of ab initio protein folding by optimally exploiting the information encoded in inter-residue interaction maps beyond what is possible by CNS.Author summaryPredicting the folded and functional 3-dimensional structure of a protein molecule from its amino acid sequence is of central importance to structural biology. Recently, promising advances have been made in ab initio protein folding due to the reasonably accurate estimation of inter-residue interaction maps at increasingly higher resolutions that range from binary contacts to finer-grained distances. Despite the progress in predicting the interaction maps, approaches for turning the residue-residue interactions projected in these maps into their precise spatial positioning heavily rely on a decade-old experimental structure determination protocol that is not suitable for predictive modeling. This paper presents a new hierarchical structure modeling method, DConStruct, which can better exploit the information encoded in the interaction maps at multiple granularities, from binary contact maps to distance-based hybrid maps at tri-level thresholding, for improved ab initio folding. Multiple large-scale benchmarking experiments show that our proposed method can substantially improve the folding accuracy for both soluble and membrane proteins compared to state-of-the-art approaches. DConStruct is licensed under the GNU General Public License v3 and freely available at https://github.com/Bhattacharya-Lab/DConStruct.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. M. Mortuza ◽  
Wei Zheng ◽  
Chengxin Zhang ◽  
Yang Li ◽  
Robin Pearce ◽  
...  

AbstractSequence-based contact prediction has shown considerable promise in assisting non-homologous structure modeling, but it often requires many homologous sequences and a sufficient number of correct contacts to achieve correct folds. Here, we developed a method, C-QUARK, that integrates multiple deep-learning and coevolution-based contact-maps to guide the replica-exchange Monte Carlo fragment assembly simulations. The method was tested on 247 non-redundant proteins, where C-QUARK could fold 75% of the cases with TM-scores (template-modeling scores) ≥0.5, which was 2.6 times more than that achieved by QUARK. For the 59 cases that had either low contact accuracy or few homologous sequences, C-QUARK correctly folded 6 times more proteins than other contact-based folding methods. C-QUARK was also tested on 64 free-modeling targets from the 13th CASP (critical assessment of protein structure prediction) experiment and had an average GDT_TS (global distance test) score that was 5% higher than the best CASP predictors. These data demonstrate, in a robust manner, the progress in modeling non-homologous protein structures using low-accuracy and sparse contact-map predictions.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008753
Author(s):  
Rahmatullah Roche ◽  
Sutanu Bhattacharya ◽  
Debswapna Bhattacharya

Crystallography and NMR system (CNS) is currently a widely used method for fragment-free ab initio protein folding from inter-residue distance or contact maps. Despite its widespread use in protein structure prediction, CNS is a decade-old macromolecular structure determination system that was originally developed for solving macromolecular geometry from experimental restraints as opposed to predictive modeling driven by interaction map data. As such, the adaptation of the CNS experimental structure determination protocol for ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of computational protein structure prediction. In this paper, we propose a new CNS-free hierarchical structure modeling method called DConStruct for folding both soluble and membrane proteins driven by distance and contact information. Rigorous experimental validation shows that DConStruct attains much better reconstruction accuracy than CNS when tested with the same input contact map at varying contact thresholds. The hierarchical modeling with iterative self-correction employed in DConStruct scales at a much higher degree of folding accuracy than CNS with the increase in contact thresholds, ultimately approaching near-optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy of DConStruct can be further improved by exploiting distance-based hybrid interaction maps at tri-level thresholding, as demonstrated by the better performance of our method in folding free modeling targets from the 12th and 13th rounds of the Critical Assessment of techniques for protein Structure Prediction (CASP) experiments compared to popular CNS- and fragment-based approaches and energy-minimization protocols, some of which even using much finer-grained distance maps than ours. Additional large-scale benchmarking shows that DConStruct can significantly improve the folding accuracy of membrane proteins compared to a CNS-based approach. These results collectively demonstrate the feasibility of greatly improving the accuracy of ab initio protein folding by optimally exploiting the information encoded in inter-residue interaction maps beyond what is possible by CNS.


Author(s):  
Yang Li ◽  
Chengxin Zhang ◽  
Eric W. Bell ◽  
Wei Zheng ◽  
Xiaogen Zhou ◽  
...  

AbstractThe topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP and CAMEO experiments, and outperformed other state-of-the-art methods by at least 58.4% for the CASP 11&12 and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-L/5 long-range contact predictions. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library.AvailabilityThe training and testing data, standalone package, and the online server for TripletRes are available at https://zhanglab.ccmb.med.umich.edu/TripletRes/.Author SummaryAb initio protein folding has been a major unsolved problem in computational biology for more than half a century. Recent community-wide Critical Assessment of Structure Prediction (CASP) experiments have witnessed exciting progress on ab initio structure prediction, which was mainly powered by the boosting of contact-map prediction as the latter can be used as constraints to guide ab initio folding simulations. In this work, we proposed a new open-source deep-learning architecture, TripletRes, built on the residual convolutional neural networks for high-accuracy contact prediction. The large-scale benchmark and blind test results demonstrate significant advancement of the proposed methods over other approaches in predicting medium- and long-range contact-maps that are critical for guiding protein folding simulations. Detailed data analyses showed that the major advantage of TripletRes lies in the unique protocol to fuse multiple evolutionary feature matrices which are directly extracted from whole-genome and metagenome databases and therefore minimize the information loss during the contact model training.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Jianjun Hu ◽  
Wenhui Yang ◽  
Rongzhi Dong ◽  
Yuxin Li ◽  
Xiang Li ◽  
...  

Crystal structure prediction is now playing an increasingly important role in the discovery of new materials or crystal engineering.


Author(s):  
Roma Chandra

Protein structure prediction is one of the important goals in the area of bioinformatics and biotechnology. Prediction methods include structure prediction of both secondary and tertiary structures of protein. Protein secondary structure prediction infers knowledge related to presence of helixes, sheets and coils in a polypeptide chain whereas protein tertiary structure prediction infers knowledge related to three dimensional structures of proteins. Protein secondary structures represent the possible motifs or regular expressions represented as patterns that are predicted from primary protein sequence in the form of alpha helix, betastr and and coils. The secondary structure prediction is useful as it infers information related to the structure and function of unknown protein sequence. There are various secondary structure prediction methods used to predict about helixes, sheets and coils. Based on these methods there are various prediction tools under study. This study includes prediction of hemoglobin using various tools. The results produced inferred knowledge with reference to percentage of amino acids participating to produce helices, sheets and coils. PHD and DSC produced the best of the results out of all the tools used.


2019 ◽  
Vol 41 (8) ◽  
pp. 745-750 ◽  
Author(s):  
Yufeng Cai ◽  
Xiongjun Li ◽  
Zhe Sun ◽  
Yutong Lu ◽  
Huiying Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document