scholarly journals Innovations in Primate Interneuron Repertoire

2019 ◽  
Author(s):  
Fenna M. Krienen ◽  
Melissa Goldman ◽  
Qiangge Zhang ◽  
Ricardo del Rosario ◽  
Marta Florio ◽  
...  

ABSTRACTPrimates and rodents, which descended from a common ancestor more than 90 million years ago, exhibit profound differences in behavior and cognitive capacity. Modifications, specializations, and innovations to brain cell types may have occurred along each lineage. We used Drop-seq to profile RNA expression in more than 184,000 individual telencephalic interneurons from humans, macaques, marmosets, and mice. Conserved interneuron types varied significantly in abundance and RNA expression between mice and primates, but varied much more modestly among primates. In adult primates, the expression patterns of dozens of genes exhibited spatial expression gradients among neocortical interneurons, suggesting that adult neocortical interneurons are imprinted by their local cortical context. In addition, we found that an interneuron type previously associated with the mouse hippocampus—the “ivy cell”, which has neurogliaform characteristics—has become abundant across the neocortex of humans, macaques, and marmosets. The most striking innovation was subcortical: we identified an abundant striatal interneuron type in primates that had no molecularly homologous cell population in mouse striatum, cortex, thalamus, or hippocampus. These interneurons, which expressed a unique combination of transcription factors, receptors, and neuropeptides, including the neuropeptide TAC3, constituted almost 30% of striatal interneurons in marmosets and humans. Understanding how gene and cell-type attributes changed or persisted over the evolutionary divergence of primates and rodents will guide the choice of models for human brain disorders and mutations and help to identify the cellular substrates of expanded cognition in humans and other primates.

2021 ◽  
Author(s):  
Arpiar Saunders ◽  
Kee Wui Huang ◽  
Cassandra Vondrak ◽  
Christina Hughes ◽  
Karina Smolyar ◽  
...  

Brain function depends on forming and maintaining connections between neurons of specific types, ensuring neural function while allowing the plasticity necessary for cellular and behavioral dynamics. However, systematic descriptions of how brain cell types organize into synaptic networks and which molecules instruct these relationships are not readily available. Here, we introduce SBARRO (Synaptic Barcode Analysis by Retrograde Rabies ReadOut), a method that uses single-cell RNA sequencing to reveal directional, monosynaptic relationships based on the paths of a barcoded rabies virus from its "starter" postsynaptic cell to that cell's presynaptic partners1. Thousands of these partner relationships can be ascertained in a single experiment, alongside genome-wide RNA profiles - and thus cell identities and molecular states - of each host cell. We used SBARRO to describe synaptic networks formed by diverse mouse brain cell types in vitro, leveraging a system similar to those used to identify synaptogenic molecules. We found that the molecular identity (cell type/subtype) of the starter cell predicted the number and types of cells that had synapsed onto it. Rabies transmission tended to occur into cells with RNA-expression signatures related to developmental maturation and synaptic transmission. The estimated size of a cell's presynaptic network, relative to that of other cells of the same type, associated with increased expression of Arpp21 and Cdh13. By tracking individual virions and their clonal progeny as they travel among host cells, single-cell, single-virion genomic technologies offer new opportunities to map the synaptic organization of neural circuits in health and disease.


Cephalalgia ◽  
2018 ◽  
Vol 38 (13) ◽  
pp. 1976-1983 ◽  
Author(s):  
William Renthal

Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.


Glia ◽  
1991 ◽  
Vol 4 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Susan Pearce-Kelling ◽  
William J. Mitchell ◽  
Brian A. Summers ◽  
Max J. G. Appel

1982 ◽  
Vol 109 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Martin R. Harris ◽  
Nerina Harborne ◽  
Bryan J. Smith ◽  
James Allan

2020 ◽  
Vol 87 (9) ◽  
pp. S110 ◽  
Author(s):  
Frank Wendt ◽  
Gita Pathak ◽  
Todd Lencz ◽  
John Krystal ◽  
Joel Gelernter ◽  
...  

2019 ◽  
Vol 29 ◽  
pp. S1124
Author(s):  
Diogo Marinho Almeida ◽  
Samuel Demharter ◽  
Thomas Werge ◽  
Konstantin Khodosevich ◽  
Alfonso Demur

Author(s):  
Theodore A. Sarafian ◽  
M. Anthony Verity ◽  
Harry V. Vinters ◽  
Charles C.-Y. Shih ◽  
Liangru Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document