scholarly journals A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways

2019 ◽  
Author(s):  
Raphael I. Benhamou ◽  
Alicia J. Angelbello ◽  
Eric T. Wang ◽  
Matthew D. Disney

SUMMARYMyotonic dystrophy type 2 (DM2) is a genetically defined muscular dystrophy caused by a toxic expanded repeat of r(CCUG) [heretofore (CCUG)exp], harbored in intron 1 of CHC-Type Zinc Finger Nucleic Acid Binding Protein (CNBP) pre-mRNA. This r(CCUG)exp causes DM2 via a gain-of-function mechanism that results in three hallmarks of its pathology: (i) binding to RNA-binding proteins (RBPs) that aggregate into nuclear foci; (ii) sequestration of muscleblind-like-1 (MBNL1) protein, a regulator of alternative pre-mRNA splicing, leading to splicing defects; and (iii) retention of intron 1 in the CNBP mRNA. Here, we find that CNBP intron retention is caused by the r(CCUG)exp-MBNL1 complex and can be rescued by small molecules. We studied two types of small molecules with different modes of action, ones that simply bind and ones that can be synthesized by a r(CCUG)exp-templated reaction in cells, that is the RNA synthesizes its own drug. Indeed, our studies completed in DM2 patient-derived fibroblasts show that the compounds disrupt the r(CCUG)exp-MBNL1 complex, reduce intron retention, subjecting the liberated intronic r(CCUG)exp to native decay pathways, and rescue other DM2-associated cellular defects. Collectively, this study shows that small molecules can affect RNA biology by shunting toxic transcripts towards native decay pathways.HIGHLIGHTSIntron retention in RNA repeat expansions can be due to repeats binding to proteinsSmall molecules that bind RNA repeats and inhibit protein binding can trigger decayA toxic RNA repeat can catalyze the synthesis of its own inhibitor on-siteOn-site drug synthesis most potently affects disease biologyeTOC BLURBThe most common way to target RNA is to use antisense oligonucleotides to target unstructured RNAs for destruction. Here, we show for the first time that small molecules targeting structured, disease-causing RNAs can shunt them towards native decay pathways by affecting their processing.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sonia Coni ◽  
Federica A Falconio ◽  
Marta Marzullo ◽  
Marzia Munafò ◽  
Benedetta Zuliani ◽  
...  

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Benjamin L. Zaepfel ◽  
Jeffrey D. Rothstein

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that affects upper and lower motor neurons. Familial ALS accounts for a small subset of cases (<10–15%) and is caused by dominant mutations in one of more than 10 known genes. Multiple genes have been causally or pathologically linked to both ALS and frontotemporal dementia (FTD). Many of these genes encode RNA-binding proteins, so the role of dysregulated RNA metabolism in neurodegeneration is being actively investigated. In addition to defects in RNA metabolism, recent studies provide emerging evidence into how RNA itself can contribute to the degeneration of both motor and cortical neurons. In this review, we discuss the roles of altered RNA metabolism and RNA-mediated toxicity in the context of TARDBP, FUS, and C9ORF72 mutations. Specifically, we focus on recent studies that describe toxic RNA as the potential initiator of disease, disease-associated defects in specific RNA metabolism pathways, as well as how RNA-based approaches can be used as potential therapies. Altogether, we highlight the importance of RNA-based investigations into the molecular progression of ALS, as well as the need for RNA-dependent structural studies of disease-linked RNA-binding proteins to identify clear therapeutic targets.


2017 ◽  
Vol 7 (7) ◽  
pp. 2249-2258 ◽  
Author(s):  
Lauriane Kuhn ◽  
Karim Majzoub ◽  
Evelyne Einhorn ◽  
Johana Chicher ◽  
Julien Pompon ◽  
...  

Abstract Receptor for Activated protein C kinase 1 (RACK1) is a scaffold protein that has been found in association with several signaling complexes, and with the 40S subunit of the ribosome. Using the model organism Drosophila melanogaster, we recently showed that RACK1 is required at the ribosome for internal ribosome entry site (IRES)-mediated translation of viruses. Here, we report a proteomic characterization of the interactome of RACK1 in Drosophila S2 cells. We carried out Label-Free quantitation using both Data-Dependent and Data-Independent Acquisition (DDA and DIA, respectively) and observed a significant advantage for the Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) method, both in terms of identification of interactants and quantification of low abundance proteins. These data represent the first SWATH spectral library available for Drosophila and will be a useful resource for the community. A total of 52 interacting proteins were identified, including several molecules involved in translation such as structural components of the ribosome, factors regulating translation initiation or elongation, and RNA binding proteins. Among these 52 proteins, 15 were identified as partners by the SWATH strategy only. Interestingly, these 15 proteins are significantly enriched for the functions translation and nucleic acid binding. This enrichment reflects the engagement of RACK1 at the ribosome and highlights the added value of SWATH analysis. A functional screen did not reveal any protein sharing the interesting properties of RACK1, which is required for IRES-dependent translation and not essential for cell viability. Intriguingly however, 10 of the RACK1 partners identified restrict replication of Cricket paralysis virus (CrPV), an IRES-containing virus.


2016 ◽  
Vol 7 (5-6) ◽  
pp. 331-340 ◽  
Author(s):  
Pei Guo ◽  
Sik Lok Lam

AbstractCCTG repeat expansion in intron 1 of the cellular nucleic acid-binding protein (CNBP) gene has been identified to be the genetic cause of myotonic dystrophy type 2 (DM2). Yet the underlying reasons for the genetic instability in CCTG repeats remain elusive. In recent years, CCTG repeats have been found to form various types of unusual secondary structures including mini-dumbbell (MDB), hairpin and dumbbell, revealing that there is a high structural diversity in CCTG repeats intrinsically. Upon strand slippage, the formation of unusual structures in the nascent strand during DNA replication has been proposed to be the culprit of CCTG repeat expansions. On the one hand, the thermodynamic stability, size, and conformational dynamics of these unusual structures affect the propensity of strand slippage. On the other hand, these structural properties determine whether the unusual structure can successfully escape from DNA repair. In this short overview, we first summarize the recent advances in elucidating the solution structures of CCTG repeats. We then discuss the potential pathways by which these unusual structures bring about variable sizes of repeat expansion, high strand slippage propensity and efficient repair escape.


2019 ◽  
Author(s):  
Giulia E. Tyzack ◽  
Raphaelle Luisier ◽  
Doaa M. Taha ◽  
Jacob Neeves ◽  
Miha Modic ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS)-causing mutations clearly implicate ubiquitously expressed and predominantly nuclear RNA binding proteins (RBPs), which form pathological cytoplasmic inclusions in this context. However, the possibility that wild-type RBPs mislocalize without necessarily becoming constituents of ALS cytoplasmic inclusions themselves remains unexplored. We hypothesized that nuclear-to-cytoplasmic mislocalization of the RBP Fused in Sarcoma (FUS), in an unaggregated state, may occur more widely in ALS that previously recognized. To address this hypothesis, we analysed motor neurons (MNs) from an human ALS induced-pluripotent stem cells (iPSC) model caused by the VCP mutation. Additionally, we examined mouse transgenic models and post-mortem tissue from human sporadic ALS cases. We report nuclear-to-cytoplasmic mislocalization of FUS in both VCP-mutation related ALS and, crucially, in sporadic ALS spinal cord tissue from multiple cases. Furthermore, we provide evidence that FUS protein binds to an aberrantly retained intron within the SFPQ transcript, which is exported from the nucleus into the cytoplasm. Collectively, these data support a model for ALS pathogenesis whereby aberrant intron-retention in SFPQ transcripts contributes to FUS mislocalization through their direct interaction and nuclear export. In summary, we report widespread mislocalization of the FUS protein in ALS and propose a putative underlying mechanism for this process.


2018 ◽  
Author(s):  
Ahmed M. Malik ◽  
Roberto A. Miguez ◽  
Xingli Li ◽  
Ye-Shih Ho ◽  
Eva L. Feldman ◽  
...  

ABSTRACTAbnormalities in nucleic acid processing are associated with the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in Matrin 3 (MATR3), a poorly understood DNA- and RNA-binding protein, cause familial ALS/FTD, and MATR3 pathology is a feature of sporadic disease, suggesting that MATR3 dysfunction is integrally linked to ALS pathogenesis. Using a primary neuron model to assess MATR3-mediated toxicity, we noted that neurons were bidirectionally vulnerable to MATR3 levels, with pathogenic MATR3 mutants displaying enhanced toxicity. MATR3’s zinc finger domains partially modulated toxicity, but elimination of its RNA recognition motifs had no effect on neuronal survival, instead facilitating its self-assembly into liquid-like droplets. In contrast to other RNA-binding proteins associated with ALS, cytoplasmic MATR3 redistribution mitigated neurodegeneration, suggesting that nuclear MATR3 mediates toxicity. Our findings offer a foundation for understanding MATR3-related neurodegeneration and how nucleic acid binding functions, localization, and pathogenic mutations drive sporadic and familial disease.


Author(s):  
Danielle L Blackwell ◽  
Sherri D Fraser ◽  
Oana Caluseriu ◽  
Claudia Vivori ◽  
Paul MK Gordon ◽  
...  

AbstractMutations in RNA binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb and neurological symptoms. Heterogeneous Nuclear Ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. Here, we show a developmental role for hnrnpul1 in zebrafish fin and craniofacial development, and in adult onset scoliosis. Furthermore, we demonstrate a role of hnrnpul1 in alternative splicing regulation. In two siblings with congenital limb malformations, whole exome sequencing detected a frameshift variant in HNRNPUL1; the developmental role of this gene in humans has not been explored. Our data suggest an important developmental role of hnRNPUL1 in both zebrafish and humans. Although there are differences in phenotypes between species, our data suggests potential conservation of ancient regulatory circuits involving hnRNPUL1 in these phylogenetically distant species.Summary statementA zebrafish model of loss of Hnrnpul1 shows alternative splicing defects and results in limb growth, craniofacial tendon, and skeletal anomalies.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


2021 ◽  
Author(s):  
Caitlin S DeJong ◽  
Darwin S Dichmann ◽  
Cameron R.T. Exner ◽  
Yuxiao Xu ◽  
Richard M Harland

The FET family of atypical RNA-binding proteins includes Fused in sarcoma (Fus), Ewings sarcoma (EWS), and the TATA-binding protein-associate factor 15 (TAF15). All FET family members are highly conserved from fish to mammals, suggesting an independent and specialized requirement for each protein. Fus is necessary for the proper splicing of genes required for mesoderm differentiation and cell adhesion in Xenopus, but the role, if any, that EWS and TAF15 play in development remains unknown. Here we define the role maternally deposited and zygotically transcribed TAF15 plays in development. We find that TAF15 is essential for the proper development of dorsoanterial neural tissues, and by sequencing the RNA from single TAF15-depleted embryos and measuring changes in transcript abundance and exon usage we found TAF15 regulates dorsoanterior neural tissue development through regulating fgfr4 and ventx2.1. Intriguingly, we find that TAF15 uses two distinct mechanisms to downregulate FGFR4 expression: 1) retention of a single intron within fgfr4 and 2) reduction of total fgfr4 transcript. Intron retention was identified when both maternal and zygotic TAF15 is depleted, while depletion of zygotic TAF15 alone leads to regulation of fgfr4 total transcripts. In this study we find that TAF15 plays an integral and pleiotropic role in the development of dorsoanterior neural tissues and further identify two novel mechanisms of gene regulation by TAF15, suggesting TAF15 gene regulation is target and cofactor-dependent, subject to the milieu of factors that are present at different times of development.


2021 ◽  
Author(s):  
Sonia Coni ◽  
Federica A. Falconio ◽  
Marta Marzullo ◽  
Marzia Munafò ◽  
Benedetta Zuliani ◽  
...  

ABSTRACTMicrosatellite expansions of CCTG repeats in the CNBP gene leads to accumulation of toxic RNA and have been associated to DM2. However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA binding protein that regulates translation and is required for mammalian development.Here we show that depletion of Drosophila CNBP in muscles causes age-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscle from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.GRAPHICAL ABSTRACTCNBP controls muscle function by regulating the polyamine metabolismLack of dCNBP impairs locomotor function through ODC-polyamine downregulationdCNBP binds dOdc mRNA and regulates its translationPolyamine supplementation or dOdc1 reconstitution rescues locomotor defectsCNBP-ODC-polyamine levels are reduced in muscle of DM2 patients


Sign in / Sign up

Export Citation Format

Share Document