myotonic dystrophy type 2
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 31)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Anjani Kumari ◽  
Saam Sedehizadeh ◽  
John David Brook ◽  
Piotr Kozlowski ◽  
Marzena Wojciechowska

AbstractThe discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.


2021 ◽  
Vol 429 ◽  
pp. 118352
Author(s):  
Stojan Peric ◽  
Ilija Gunjic ◽  
Biljana Salak-Djokic ◽  
Neda Delic ◽  
Ivo Bozovic ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sonia Coni ◽  
Federica A Falconio ◽  
Marta Marzullo ◽  
Marzia Munafò ◽  
Benedetta Zuliani ◽  
...  

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


2021 ◽  
Vol 23 (9) ◽  
Author(s):  
Federica Montagnese

Abstract Purpose of the review Myotonic dystrophy types 1 and 2 are frequent forms of muscular dystrophies in adulthood. Their clinical differences need to be taken into account for the most appropriate treatment of patients. The aim of this article is to provide an overview on the current and upcoming therapeutic options for patients with myotonic dystrophy type 2 (DM2). Recent findings At the moment, no disease-modifying therapies are available for DM2; next-generation therapies may however be available in the near future. In the meanwhile, the symptomatic management of patients has greatly improved, thank to the production of consensus-based standards of care and the growing evidence of efficacy of anti-myotonic drugs, promising employment of cannabinoids for symptom’s relief, regular monitoring, and early detection of treatable extra-muscular manifestations. Summary The treatment of DM2 is currently symptomatic and relies on the coordinated intervention of a multidisciplinary team. It remains to be determined whether upcoming causal therapies for myotonic dystrophy type 1 will be applicable also in DM2.


2021 ◽  
Vol 10 (17) ◽  
pp. 3934
Author(s):  
Jan Radvanszky ◽  
Michaela Hyblova ◽  
Eva Radvanska ◽  
Peter Spalek ◽  
Alica Valachova ◽  
...  

Myotonic dystrophy type 2 (DM2) is caused by expansion of a (CCTG)n repeat in the cellular retroviral nucleic acid-binding protein (CNBP) gene. The sequence of the repeat is most commonly interrupted and is stably inherited in the general population. Although expanded alleles, premutation range and, in rare cases, also non-disease associated alleles containing uninterrupted CCTG tracts have been described, the threshold between these categories is poorly characterised. Here, we describe four families with members reporting neuromuscular complaints, in whom we identified altogether nine ambiguous CNBP alleles containing uninterrupted CCTG repeats in the range between 32 and 42 repeats. While these grey-zone alleles are most likely not pathogenic themselves, since other pathogenic mutations were identified and particular family structures did not support their pathogenic role, they were found to be unstable during intergenerational transmission. On the other hand, there was no observable general microsatellite instability in the genome of the carriers of these alleles. Our results further refine the division of CNBP CCTG repeat alleles into two major groups, i.e., interrupted and uninterrupted alleles. Both interrupted and uninterrupted alleles with up to approximately 30 CCTG repeats were shown to be generally stable during intergenerational transmission, while intergenerational as well as somatic instability seems to gradually increase in uninterrupted alleles with tract length growing above this threshold.


Author(s):  
Rakesh Kumar Jha ◽  
Dhruba Hari Chandi

Introduction: Multiple myeloma (MM), also known as plasma cell myeloma and simply myeloma, is a cancer of plasma cells, a type of white blood cell that normally produces antibodies. Often, no symptoms are noticed initially. As it progresses, bone pain, anemia, kidney dysfunction, and infections may occur. Multiple myeloma is a hematologic disease characterized by an increase in plasma cells in the bone marrow and, more commonly, the presence of monoclonal immunoglobulin in the blood and / or urine. It is the second major hematologic attack found to have an annual occurrence with an increase in the United States of nearly 15,000 and approximately 45,000, respectively. The condition is higher with age (age between acquisitions of 67 yr). This case report describes a multiple myeloma patient presented with muscle sclerosis and was suspected of having myotonic dystrophy type 2 and illustrates the aspects of differential diagnosis, the use of laboratory and imaging for diagnosis. Conclusion: Despite the fact that periodontal illness has a detrimental impact on one's quality of life, those benefits are often ignored. As a consequence, periodontal consultation can be a key component of MM care. Treatment for periodontal disease should begin as soon as possible.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fabian Hofmeister ◽  
Lisa Baber ◽  
Uta Ferrari ◽  
Stefan Hintze ◽  
Stefanie Jarmusch ◽  
...  

Abstract Background Sarcopenia is the age-related loss of muscle mass and strength. Undiagnosed late-onset neuromuscular disorders need to be considered in the differential diagnosis of sarcopenia. Aim Based on emblematic case reports and current neuromuscular diagnostic guidelines for three common late-onset neuromuscular disorders, a differential diagnostic approach for geriatric patients presenting with a sarcopenic phenotype is given. Methods Patients over 65 years of age with sarcopenia, amyotrophic lateral sclerosis, inclusion body myositis and myotonic dystrophy type 2 were recruited. All patients were assessed for sarcopenia based on the revised European consensus definition. Patients with neuromuscular diseases were diagnosed according to the revised El Escorial criteria and the European neuromuscular centre criteria. Phenotypes and diagnostic criteria for all patients were summarized including their specific histopathological findings. Results All patients with neuromuscular diseases were positively screened for sarcopenia and classified as severe sarcopenic by means of assessment. The clinical phenotype, the evolution pattern of weakness and muscle atrophy combined with laboratory finding including electromyography could unquestionably distinguish the diseases. Discussion Neuromuscular disorders can manifest beyond the age of 65 years and misdiagnosed as sarcopenia. The most common diseases are inclusion body myositis, amyotrophic lateral sclerosis and myotonic dystrophy type 2. A diagnostic work-up for neuromuscular diseases ensures their correct diagnosis by clinical-, electrophysiological, histopathological, and genetic work-up. Conclusions In geriatric patients with a focal or asymmetrical muscular weakness and atrophy, sarcopenia assessment should be extended with patient’s history of disease course. Furthermore, concomitant diseases, analysis of serum creatine kinase, electrophysiological examination, and in selected patients muscle biopsy and gene analysis is needed to rule out a late-onset neuromuscular disorder.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annalisa Botta ◽  
Virginia Veronica Visconti ◽  
Luana Fontana ◽  
Paola Bisceglia ◽  
Mario Bengala ◽  
...  

Myotonic dystrophy type 2 (DM2) is a multisystemic disorder caused by a (CCTG)n in intron 1 of the CNBP gene. The CCTG repeat tract is part of a complex (TG)v(TCTG)w(CCTG)x(NCTG)y(CCTG)z motif generally interrupted in CNBP healthy range alleles. Here we report our 14-year experience of DM2 postnatal genetic testing in a total of 570 individuals. The DM2 locus has been analyzed by a combination of SR-PCR, TP-PCR, LR-PCR, and Sanger sequencing of CNBP alleles. DM2 molecular diagnosis has been confirmed in 187/570 samples analyzed (32.8%) and is mainly associated with the presence of myotonia in patients. This set of CNBP alleles showed unimodal distribution with 25 different alleles ranging from 108 to 168 bp, in accordance with previous studies on European populations. The most frequent CNBP alleles consisted of 138, 134, 140, and 136 bps with an overall locus heterozygosity of 90%. Sequencing of 103 unexpanded CNBP alleles in DM2-positive patients revealed that (CCTG)5(NCTG)3(CCTG)7 and (CCTG)6(NCTG)3(CCTG)7 are the most common interruption motifs. We also characterized five CNBP premutated alleles with (CCTG)n repetitions from n = 36 to n = 53. However, the molecular and clinical consequences in our cohort of samples are not unequivocal. Data that emerged from this study are representative of the Italian population and are useful tools for National and European centers offering DM2 genetic testing and counseling.


Sign in / Sign up

Export Citation Format

Share Document