scholarly journals Modelling the niches of wild and domesticated Ungulate species using deep learning

2019 ◽  
Author(s):  
Mark Rademaker ◽  
Laurens Hogeweg ◽  
Rutger Vos

AbstractKnowledge of global biodiversity remains limited by geographic and taxonomic sampling biases. The scarcity of species data restricts our understanding of the underlying environmental factors shaping distributions, and the ability to draw comparisons among species. Species distribution models (SDMs) were developed in the early 2000s to address this issue. Although SDMs based on single layered Neural Networks have been experimented with in the past, these performed poorly. However, the past two decades have seen a strong increase in the use of Deep Learning (DL) approaches, such as Deep Neural Networks (DNNs). Despite the large improvement in predictive capacity DNNs provide over shallow networks, to our knowledge these have not yet been applied to SDM. The aim of this research was to provide a proof of concept of a DL-SDM1. We used a pre-existing dataset of the world’s ungulates and abiotic environmental predictors that had recently been used in MaxEnt SDM, to allow for a direct comparison of performance between both methods. Our DL-SDM consisted of a binary classification DNN containing 4 hidden layers and drop-out regularization between each layer. Performance of the DL-SDM was similar to MaxEnt for species with relatively large sample sizes and worse for species with relatively low sample sizes. Increasing the number of occurrences further improved DL-SDM performance for species that already had relatively high sample sizes. We then tried to further improve performance by altering the sampling procedure of negative instances and increasing the number of environmental predictors, including species interactions. This led to a large increase in model performance across the range of sample sizes in the species datasets. We conclude that DL-SDMs provide a suitable alternative to traditional SDMs such as MaxEnt and have the advantage of being both able to directly include species interactions, as well as being able to handle correlated input features. Further improvements to the model would include increasing its scalability by turning it into a multi-classification model, as well as developing a more user friendly DL-SDM Python package.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3279
Author(s):  
Maria Habib ◽  
Mohammad Faris ◽  
Raneem Qaddoura ◽  
Manal Alomari ◽  
Alaa Alomari ◽  
...  

Maintaining a high quality of conversation between doctors and patients is essential in telehealth services, where efficient and competent communication is important to promote patient health. Assessing the quality of medical conversations is often handled based on a human auditory-perceptual evaluation. Typically, trained experts are needed for such tasks, as they follow systematic evaluation criteria. However, the daily rapid increase of consultations makes the evaluation process inefficient and impractical. This paper investigates the automation of the quality assessment process of patient–doctor voice-based conversations in a telehealth service using a deep-learning-based classification model. For this, the data consist of audio recordings obtained from Altibbi. Altibbi is a digital health platform that provides telemedicine and telehealth services in the Middle East and North Africa (MENA). The objective is to assist Altibbi’s operations team in the evaluation of the provided consultations in an automated manner. The proposed model is developed using three sets of features: features extracted from the signal level, the transcript level, and the signal and transcript levels. At the signal level, various statistical and spectral information is calculated to characterize the spectral envelope of the speech recordings. At the transcript level, a pre-trained embedding model is utilized to encompass the semantic and contextual features of the textual information. Additionally, the hybrid of the signal and transcript levels is explored and analyzed. The designed classification model relies on stacked layers of deep neural networks and convolutional neural networks. Evaluation results show that the model achieved a higher level of precision when compared with the manual evaluation approach followed by Altibbi’s operations team.



Author(s):  
Ruofan Liao ◽  
Paravee Maneejuk ◽  
Songsak Sriboonchitta

In the past, in many areas, the best prediction models were linear and nonlinear parametric models. In the last decade, in many application areas, deep learning has shown to lead to more accurate predictions than the parametric models. Deep learning-based predictions are reasonably accurate, but not perfect. How can we achieve better accuracy? To achieve this objective, we propose to combine neural networks with parametric model: namely, to train neural networks not on the original data, but on the differences between the actual data and the predictions of the parametric model. On the example of predicting currency exchange rate, we show that this idea indeed leads to more accurate predictions.



Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

For the past few years, deep learning (DL) robustness (i.e. the ability to maintain the same decision when inputs are subject to perturbations) has become a question of paramount importance, in particular in settings where misclassification can have dramatic consequences. To address this question, authors have proposed different approaches, such as adding regularizers or training using noisy examples. In this paper we introduce a regularizer based on the Laplacian of similarity graphs obtained from the representation of training data at each layer of the DL architecture. This regularizer penalizes large changes (across consecutive layers in the architecture) in the distance between examples of different classes, and as such enforces smooth variations of the class boundaries. We provide theoretical justification for this regularizer and demonstrate its effectiveness to improve robustness on classical supervised learning vision datasets for various types of perturbations. We also show it can be combined with existing methods to increase overall robustness.



2021 ◽  
Vol 65 (1) ◽  
pp. 11-22
Author(s):  
Mengyao Lu ◽  
Shuwen Jiang ◽  
Cong Wang ◽  
Dong Chen ◽  
Tian’en Chen

HighlightsA classification model for the front and back sides of tobacco leaves was developed for application in industry.A tobacco leaf grading method that combines a CNN with double-branch integration was proposed.The A-ResNet network was proposed and compared with other classic CNN networks.The grading accuracy of eight different grades was 91.30% and the testing time was 82.180 ms, showing a relatively high classification accuracy and efficiency.Abstract. Flue-cured tobacco leaf grading is a key step in the production and processing of Chinese-style cigarette raw materials, directly affecting cigarette blend and quality stability. At present, manual grading of tobacco leaves is dominant in China, resulting in unsatisfactory grading quality and consuming considerable material and financial resources. In this study, for fast, accurate, and non-destructive tobacco leaf grading, 2,791 flue-cured tobacco leaves of eight different grades in south Anhui Province, China, were chosen as the study sample, and a tobacco leaf grading method that combines convolutional neural networks and double-branch integration was proposed. First, a classification model for the front and back sides of tobacco leaves was trained by transfer learning. Second, two processing methods (equal-scaled resizing and cropping) were used to obtain global images and local patches from the front sides of tobacco leaves. A global image-based tobacco leaf grading model was then developed using the proposed A-ResNet-65 network, and a local patch-based tobacco leaf grading model was developed using the ResNet-34 network. These two networks were compared with classic deep learning networks, such as VGGNet, GoogLeNet-V3, and ResNet. Finally, the grading results of the two grading models were integrated to realize tobacco leaf grading. The tobacco leaf classification accuracy of the final model, for eight different grades, was 91.30%, and grading of a single tobacco leaf required 82.180 ms. The proposed method achieved a relatively high grading accuracy and efficiency. It provides a method for industrial implementation of the tobacco leaf grading and offers a new approach for the quality grading of other agricultural products. Keywords: Convolutional neural network, Deep learning, Image classification, Transfer learning, Tobacco leaf grading



2022 ◽  
pp. 1-27
Author(s):  
Clifford Bohm ◽  
Douglas Kirkpatrick ◽  
Arend Hintze

Abstract Deep learning (primarily using backpropagation) and neuroevolution are the preeminent methods of optimizing artificial neural networks. However, they often create black boxes that are as hard to understand as the natural brains they seek to mimic. Previous work has identified an information-theoretic tool, referred to as R, which allows us to quantify and identify mental representations in artificial cognitive systems. The use of such measures has allowed us to make previous black boxes more transparent. Here we extend R to not only identify where complex computational systems store memory about their environment but also to differentiate between different time points in the past. We show how this extended measure can identify the location of memory related to past experiences in neural networks optimized by deep learning as well as a genetic algorithm.



Author(s):  
Victoria Wu

Introduction: Scoliosis, an excessive curvature of the spine, affects approximately 1 in 1,000 individuals. As a result, there have formerly been implementations of mandatory scoliosis screening procedures. Screening programs are no longer widely used as the harms often outweigh the benefits; it causes many adolescents to undergo frequent diagnosis X-ray procedure This makes spinal ultrasounds an ideal substitute for scoliosis screening in patients, as it does not expose them to those levels of radiation. Spinal curvatures can be accurately computed from the location of spinal transverse processes, by measuring the vertebral angle from a reference line [1]. However, ultrasound images are less clear than x-ray images, making it difficult to identify the spinal processes. To overcome this, we employ deep learning using a convolutional neural network, which is a powerful tool for computer vision and image classification [2]. Method: A total of 2,752 ultrasound images were recorded from a spine phantom to train a convolutional neural network. Subsequently, we took another recording of 747 images to be used for testing. All the ultrasound images from the scans were then segmented manually, using the 3D Slicer (www.slicer.org) software. Next, the dataset was fed through a convolutional neural network. The network used was a modified version of GoogLeNet (Inception v1), with 2 linearly stacked inception models. This network was chosen because it provided a balance between accurate performance, and time efficient computations. Results: Deep learning classification using the Inception model achieved an accuracy of 84% for the phantom scan.  Conclusion: The classification model performs with considerable accuracy. Better accuracy needs to be achieved, possibly with more available data and improvements in the classification model.  Acknowledgements: G. Fichtinger is supported as a Canada Research Chair in Computer-Integrated Surgery. This work was funded, in part, by NIH/NIBIB and NIH/NIGMS (via grant 1R01EB021396-01A1 - Slicer+PLUS: Point-of-Care Ultrasound) and by CANARIE’s Research Software Program.    Figure 1: Ultrasound scan containing a transverse process (left), and ultrasound scan containing no transverse process (right).                                Figure 2: Accuracy of classification for training (red) and validation (blue). References:           Ungi T, King F, Kempston M, Keri Z, Lasso A, Mousavi P, Rudan J, Borschneck DP, Fichtinger G. Spinal Curvature Measurement by Tracked Ultrasound Snapshots. Ultrasound in Medicine and Biology, 40(2):447-54, Feb 2014.           Krizhevsky A, Sutskeyer I, Hinton GE. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25:1097-1105. 



2019 ◽  
Vol 491 (2) ◽  
pp. 2280-2300 ◽  
Author(s):  
Kaushal Sharma ◽  
Ajit Kembhavi ◽  
Aniruddha Kembhavi ◽  
T Sivarani ◽  
Sheelu Abraham ◽  
...  

ABSTRACT Due to the ever-expanding volume of observed spectroscopic data from surveys such as SDSS and LAMOST, it has become important to apply artificial intelligence (AI) techniques for analysing stellar spectra to solve spectral classification and regression problems like the determination of stellar atmospheric parameters Teff, $\rm {\log g}$, and [Fe/H]. We propose an automated approach for the classification of stellar spectra in the optical region using convolutional neural networks (CNNs). Traditional machine learning (ML) methods with ‘shallow’ architecture (usually up to two hidden layers) have been trained for these purposes in the past. However, deep learning methods with a larger number of hidden layers allow the use of finer details in the spectrum which results in improved accuracy and better generalization. Studying finer spectral signatures also enables us to determine accurate differential stellar parameters and find rare objects. We examine various machine and deep learning algorithms like artificial neural networks, Random Forest, and CNN to classify stellar spectra using the Jacoby Atlas, ELODIE, and MILES spectral libraries as training samples. We test the performance of the trained networks on the Indo-U.S. Library of Coudé Feed Stellar Spectra (CFLIB). We show that using CNNs, we are able to lower the error up to 1.23 spectral subclasses as compared to that of two subclasses achieved in the past studies with ML approach. We further apply the trained model to classify stellar spectra retrieved from the SDSS data base with SNR > 20.



Author(s):  
Derya Soydaner

In recent years, we have witnessed the rise of deep learning. Deep neural networks have proved their success in many areas. However, the optimization of these networks has become more difficult as neural networks going deeper and datasets becoming bigger. Therefore, more advanced optimization algorithms have been proposed over the past years. In this study, widely used optimization algorithms for deep learning are examined in detail. To this end, these algorithms called adaptive gradient methods are implemented for both supervised and unsupervised tasks. The behavior of the algorithms during training and results on four image datasets, namely, MNIST, CIFAR-10, Kaggle Flowers and Labeled Faces in the Wild are compared by pointing out their differences against basic optimization algorithms.



2021 ◽  
Vol 5 (3) ◽  
pp. 584-593
Author(s):  
Naufal Hilmiaji ◽  
Kemas Muslim Lhaksmana ◽  
Mahendra Dwifebri Purbolaksono

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness. The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the same dataset.



Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1246
Author(s):  
Ning Hung ◽  
Andy Kuan-Yu Shih ◽  
Chihung Lin ◽  
Ming-Tse Kuo ◽  
Yih-Shiou Hwang ◽  
...  

In this study, we aimed to develop a deep learning model for identifying bacterial keratitis (BK) and fungal keratitis (FK) by using slit-lamp images. We retrospectively collected slit-lamp images of patients with culture-proven microbial keratitis between 1 January 2010 and 31 December 2019 from two medical centers in Taiwan. We constructed a deep learning algorithm consisting of a segmentation model for cropping cornea images and a classification model that applies different convolutional neural networks (CNNs) to differentiate between FK and BK. The CNNs included DenseNet121, DenseNet161, DenseNet169, DenseNet201, EfficientNetB3, InceptionV3, ResNet101, and ResNet50. The model performance was evaluated and presented as the area under the curve (AUC) of the receiver operating characteristic curves. A gradient-weighted class activation mapping technique was used to plot the heat map of the model. By using 1330 images from 580 patients, the deep learning algorithm achieved the highest average accuracy of 80.0%. Using different CNNs, the diagnostic accuracy for BK ranged from 79.6% to 95.9%, and that for FK ranged from 26.3% to 65.8%. The CNN of DenseNet161 showed the best model performance, with an AUC of 0.85 for both BK and FK. The heat maps revealed that the model was able to identify the corneal infiltrations. The model showed a better diagnostic accuracy than the previously reported diagnostic performance of both general ophthalmologists and corneal specialists.



Sign in / Sign up

Export Citation Format

Share Document